
256-Byte Creative Programs

Sofian Audry, Angela Chang,
Chris Kerich, Milton Läufer

and Nick Montfort

June 2017 TROPE–17-02

Abstract
During the past semester, inspired by work in the demoscene, one-line and similarly
short programs in recreational computing, and other concise productions, we began
writing 256-byte programs to share in Trope Tank meetings. Interestingly, these turned
out to be of several different particular types and helped us in different ways to
investigate aspects of computing and culture. We discuss some of the types of practice
that we developed and a few of the insights we reached, concluding with a note about
our Salon 256, in which we invited others to join us and share short programs.

A technical report from

The Trope Tank
NYC, 545 E 14th St & MIT, 14N-233
http://nickm.com/trope_tank/

© 2017 Sofian Audry, Angela Chang, Chris Kerich,
Milton Läufer and Nick Montfort

This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit:
http://creativecommons.org/licenses/by-sa/4.0/

or send a letter to Creative Commons, 444 Castro Street,
Suite 900, Mountain View, California, 94041, USA.

2

A research and creative practice project undertaken in the Trope Tank in 2017 involved
coding short computer programs limited to 256 bytes. The project was initiated
following some of the lab’s members’ participation to the Synchrony demoparty on
January 27-28. This event had a compo (competition) category called “nano” that was
described as:

Maximum file size is 256 bytes for the executable. Entries are
allowed in standard interpreted languages that are standard
with the OS, free software, or freeware (e.g., JavaScript, Perl,
Processing, BASIC, QBasic). If the demo is for an interpreted
language, the source file is limited to 256 bytes.1 2

This category was developed by Montfort for the first Synchrony the year before. Our
core group of Trope Tank members (Sofian Audry, Angela Chang, Chris Kerich, Milton
Laufer, and Nick Montfort) participated in the lab’s 256-byte project, committing to
create works on a regular basis. These creations were shown and experienced during
lab meetings, during and after which some of these works were refactored to make
them shorter. All works were made available to the public in an online repository3.

A total of 36 works were generated over the course of the semester, to which we can
add 10 refactored versions of some of these original works. The works were written in
different languages (Python, JavaScript, BASIC, assembly) and for various environments
(the Commodore 64, Web browsers, the Linux terminal). They also occupied a wide
range of genres, from interactive fictions to classic game remakes, from educational
programs to generative animations.

Coders employed different methods to keep their programs short, such as, in
interpreted programs, removing unneeded whitespace, using 1-letter-long variable
names, reusing variables, and employing language-specific tricks. In some cases we
chose to write in assembly and to assemble an executable of 256 bytes or less.

Pedagogical Nanos

Angela Chang pursued an educational/pedagogical approach for her works by
developing tools to help beginning programmers. The works are not intended to be
used as standalone programs, but rather function best in a command line interpreter or
iPython/Jupyter notebook. Students are meant to use the Python to edit the functions;
prompting programming activity is inherent in the experience of these pieces. These

1 http://synchrony.nyc
2 Although we first expanded these constraints to include non-programming media such as text, image,
and sound, only two productions turned out not to be computer programs; one was a text file, another a
set of HTML files summing to less than 256 bytes.
3 http://nickm.com/trope_tank/256/

3

programs are a response to Nick Montfort’s proposed starter programs from his
Exploratory Programming,4 where each work highlights some challenging programming
concept that seasoned programmers take for granted. For example, vizlist shows that
list and string indices begin at 0, while message and unmessage shows how string
manipulation could be used to encode and decode a message. The image functions
demonstrate the pixel-by-pixel addressing and sequential processing necessary for
programming with images. Finally emdas and pemdas expose python’s order of
operations: emdas invites users to reason about how different expressions are
evaluated, while pembas recursively demonstrates how parenthesis are prioritized over
the other operations.

One program stepframe outputs this sequential flipping:

Angela writes about her work:

What I learned, besides some advanced programming tricks
for condensing code, is that small programs invite tinkering.
Students find these small programs more approachable
because there are few variables and operations to think about.
They can more easily rearrange lines, change operators to
manipulate the constructs (lists, images, and strings) directly
than with longer programs. Students are also introduced to
programming shorthand, coding practices that are not
typically found in introductory textbooks.
Intellectually, it is a challenge to balance code legibility with
conciseness. These programs helped me think about what the
essential problems of programming were to my students and
distill an experience that would help them practice it.

Text-based Games

Nick Montfort came up with a work of interactive fiction called Wastes written in
Python 3. The piece, launched from the command line, presents the following:

WASTES
an adventure

Moor 53

>

4 Montfort, Nick. Exploratory Programming for the Arts and Humanities. MIT Press, Cambridge,
Massachusetts, 2016.

4

The prompt invites the user to type instructions. For example, she can use cardinal
directions (north, south, east, west) to navigate within the world, soon to discover a
wide, mostly empty wasteland that presents itself as a 10x10 grid. This space can, if the
player wishes, be mapped out on paper. The work remains true to the interactive
fiction form, having a sort of minimal world model and parser. Wastes allows the player
to “look” and to “quit” the game and even provides an opportunity to win the game if
the player locates a treasure in one of the Moor locations – always the same one; there
is no procedural generation or random placement in canonical IF. If they player does
win, the game addresses her as “you” (“You won!”) in a manner typical of text
adventures, multisequential novels, and the like.

The code was written in Python 3, which allows assigning a function to a variable, thus
saving space by rewriting function print as p; note also that the game’s main loop is a
while loop:

p=print;l=53;i='l';p('\nWASTES\nan adventure\n')
while'q'!=i:

l+=(i=='s')*(l<90)*10+(i=='e')*(l%10<9)-(i=='n')*(l>9)*10-
(i=='w')*(l%10>0);x=l==7;p(('?','Moor '+str(l)+"\nLo, a gem."*x)[i
in'nsewl']);i=input('\n>')[:1]

if(i in'gt')&x:p('You won!\n');i='q'

Shortly after writing this send-up of interactive fiction, which presented a rather
pointless treasure hunt and a tabula rosa player character, Nick wrote a 256-byte classic
hypertext fiction, Vita, using several HTML files. This one allows the player to choose,
for instance, “...was it because of the war, or your mother?”

The Flu Shot Stand, created by Sofian, is also an investigation of a classic sort of program
– an attempt to reinterpret the 1973 business simulation game Lemonade Stand by Bob
Jamison. The original piece put the user in charge of a lemonade stand, asking her to
make decisions such as how many glasses of lemonade to make, how much advertising
to buy, as well as the price to charge for each glass. Based on these decisions and on
random events such as weather conditions and street closure, the user would know
how many glasses were sold, and would see the profit or loss for the round.

In Sofian’s version, written in BASIC for the Commodore 64, the lemonade maker is
turned into a pharmacist who buys and sells flu shots. In each round, the user is
presented with a forecast of next day’s temperature (in Celsius) and needs to input the
number of shots to buy and how much to sell them. Then, the actual temperature is
presented (which may differ from the prediction) and the demand for shots is
computed. This demand is calculated using a simple linear model, simulating the
number of infected people due to low temperature while into account the adversarial
effect of medication cost, as follows:

demand = (149 - temperature) - (5 x price)

Based on this demand, the number of flu shots produced, and the price of each shot, the
program computes the profits made (if any) and moves to the next round. In order to

5

save on space, there is no check on available resources, and the user’s available assets
can become negative (we suppose it is possible to borrow money).

The code of 256 characters reads as follows, with the computation of shots sold in bold:

1 b=-50:m=99:c=50
2 w=rnd(0):r=int(w*m+b):e=rnd(0)/3-.3:f=int((w+e)*m+b):print "$";c:print
"outlook:";f;"c"
3 input "buy n. shots";n:input "$/shot";p:print "today:";r;"c":s=int(m-
m*w-5*p):if s>n then s=n
5 if s<0 then s=0
6 print "sold";s:c=c-n+s*p:goto 2

Character-based animations

Chris’s works, all of them programmed in Python, present a progression mainly focused
in the use of four (4) ASCII characters: /, -, \, and | (though not every work uses all of
those characters). In his first contribution, titled Hex, lines of text are printed directly
on the terminal window. As the text starts scrolling, it creates an animation of growing
hexagons, the only regular figure that appears constantly in nature.

This idea developed in different variations, each one a representation of different
phenomena or landscapes. For instance, Wave and Rain are similar programs with very
distinctive outputs:

6

As in Hex, these two works make use of automatic vertical scrolling. Unlike Hex, Wave
and Rain apply randomness, and are not constrained to one particular geometrical
figure. Then, the effect of both of them is accomplished by switching, in a coherent
manner, from one of /, \, or | to another. The original version of Wave is 252 bytes:

import random as r, time as t, math
s=1
o="|"
p={'\\':1,'/':-1,'|':0}
while 1:

c=["\\","/","|"]
s+=p[o]
print s*" "+o*s
t.sleep(.07)
if o=="\\":c.remove("/")
if o=="/":c.remove("\\")
o=r.choice(c)
if (o=="\\"and s>=99)or(o=="/"and s<=1):o="|"

The group shortened the code to 156 bytes using a series of optimizations, some of
which are of general interest. By finding a better representation for the three
characters (in a string with three characters rather than a list of quoted characters),
and indexing efficiently into that representation, several reductions in size were made
possible. The result is even arguably clearer overall:

import random as r,time as t
s=d=1
while 1:

s+=d-1;print s*' '+'/|\\'[d]*s;t.sleep(.07);d=r.choice([0,1,2]
[d>1:3-(d<1)])

if(s<2)&(d<1):d=1
if s>39:d=d%2

7

Later in the semester, Chris produced City, a scrolling ASCII work that represents
fictional generative buildings and uses only two characters (| and _), as the result is
meant to be square. The scrolling is horizontal and creates an image suggestive of a city
skyline, one that could be used as a platform or background for a scrolling game.

This type of visual development through the use of particular characters was also used
by Sofian in CA, a Commodore 64 program that uses PETSCII characters:

8

Milton Läufer’s work, like Chris’s work in Python, was all done in the same language,
HTML5/Javascript. This selection gave him the ability to easily share his work on the
Web. His first two pieces have a similar code, though the result is very different:

<body
onload=d=document;z=0;setInterval("a=d
.createElement('div');t=a.style;t.font
Size=10+z/16;r=z*.1;s=(1+7*r);t.left=7
00+s*Math.cos(r);t.top=400+s*Math.sin(
r);t.position='absolute';a.innerHTML='
';d.body.appendChild(a);z++",9)>ℵ

<body
onload=d=document;z=0;p=d.body;setInte
rval("for(x=-
1;x<2;x+=2)a=d.createElement('div'),t=
a.style,t.position='absolute',a.innerH
TML=' ',t.top=z*25,t.fontSize=(i=7+x*Mℵ
ath.cos(z*.1))*i,t.left=i/.01,p.append
Child(a);p.scrollTop=p.scrollHeight;z+
+",99)>

The use of <body> takes advantage of the fact that HTML5 does not require declaration
of either <html> or <head>; it is also not required that this tag be closed. Using a
<script> tag instead, would be shorter, but that approach has the disadvantage of
implying the creation, by JavaScript, of the body element. The choice of the Hebrew
aleph character was mainly a aesthetic one, according to the author, but has a price
associated with being a three-byte character, as this character doesn’t belong to the
standard ASCII table.

Milton’s other two pieces emulated, by the alternation of the * and ‘ characters and the
erratic movement of both, the motion of a fly, which would bounce off the top and
bottom areas of the screen. The change implemented in the second piece is that this
one represents two flies. Internally, both of them are similar to the aleph-based ones,
using the JavaScript trigonometrical functions and a time loop.

Nano-nano

The shortest work in the lot is a 36 characters long BASIC work for the C64 called Storm.
The piece was written by Sofian on March 15th 2017, and was inspired by a two-days
long snowstorm that hit the East Coast on March 14-15. The one-line code randomly
fills the screen with the star (*) symbol (PETSCI code 42) until it covers the whole area:

10 poke 1024+rnd(1)*1000,42:goto 10

Here are images of the work as it evolves through time:

9

About this work, Sofian writes:

Working under such harsh size constraints as those imposed
by this project is not a habit for me. I am used to working with
complex, high-level software architectures. In most 256 bytes
works I created, I started with a big idea, realized mid-way that
I would not be able to make it as I wanted, and struggled my
way through to keep as much of the core features as possible. I
made Storm with a totally different approach. I was sitting in
the kitchen in the morning after the blizzard, looking at my
backyard covered in snow, I had this idea and I just wrote it
down, without thinking much about it. Storm is the result of a
process of discovery and acceptance, that simple programs
have the potential to generate rich, evocative experiences.

After this program was presented, we looked into 10 PRINT CHR$(205.5+RND(1)); : GOTO 105
and found, on page 153, a program called “Icicle Storm” which is identical except for
using 78 (the screen code for a diagonal line from upper right to lower left) instead of
42. Sofian’s re-creation of this program is apt, as many hobbyist programs (such as the
famous 10 PRINT) were reworked, reimplemented, and persisted almost as folklore
does in culture. Another feature of very short programs is that aspects of them, and
sometimes the whole program, become memorable enough for programmers to redo,
or, in some cases, are suitable and pleasing enough that they are often rediscovered.

5 Montfort, Nick, Patsy Baudoin, John Bell, Ian Bogost, Jeremy Douglass, Mark C. Marino, Michael Mateas,
Casey Reas, Mark Sample, and Noah Vawter. 10 PRINT CHR$(205.5+RND(1)); : GOTO 10. MIT Press, Cambridge,
Massachusetts, 2013.

10

Salon 256

On May 1st 2017, we organized Salon 256, an open event that took place in Building 14 at
MIT. People were invited to sign up before the event or when they arrived to to show a
nano piece of their making, discuss it, and answer questions. Audry, Chang, Kerich, and
Montfort presented, but there was also interest and participation from across campus
and from the local community, with presentations that included a LISP interpreter
written in Lisp (thanks to Henry Lieberman of CSAIL), an assembly-language demo
representing and written on a train (Dr. Claw, the organizer of the local demoparty,
@party), a JavaScript bookmarklet to jumble the words in Web pages (MIT
undergraduate Willy Wu), and a system that uses a word list to skip through slightly
different English words (Doug Orleans, a local computer scientist). The work here
showed a new sort of engagement with existing data sets and systems, including LISP,
word lists, and pages on the Web.

