
Curveship’s Automatic Narrative Style
Nick Montfort

Massachusetts Institute of Technology
77 Massachusetts Ave, 14N-233

Cambridge, MA 02139
1.617.324.1429

nickm@nickm.com

ABSTRACT
Curveship, a Python framework for developing interactive fiction
(IF) with narrative style, is described. The system simulates a
world with locations, characters, and objects, providing the
typical facilities of an IF development system. To these it adds the
ability to generate text and to change the telling of events and
description of items using high-level narrative parameters, so that,
for instance, different actors can be focalized and events can be
told out of order. By assigning a character to be narrator or
moving the narrator in time, the system can determine
grammatical specifics and render the text in a new narrative style.
Curveship offers those interested in narrative systems a way to
experiment with changes in the narrative discourse; for
interactive fiction authors and those who wish to use of the
system as a component of their own, it is a way to create powerful
new types of narrative experiences. The templates used for
language generation in Curveship, the string-with-slots
representation, shows that there is a compromise between highly
flexible but extremely difficult-to-author abstract syntax
representations and simple strings, which are easy to write but
extremely inflexible. The development of the system has
suggested ways to refine narrative theory, offering new
understandings of how narrative distance can be understood as
being composed of lower-level changes in narrative and how the
order of events is better represented as an ordered tree than a
simple sequence.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Processing –
discourse, language generation.

General Terms
Interactive storytelling

Keywords
Electronic literature, interactive fiction, text adventure games,
interactive storytelling, narrating, narrative.

1. INTRODUCTION
Curveship was created to combine the successes of interactive
fiction with the long literary tradition of varied narrative style. A
very succinct description of the system is that it takes the
contributions of the classic game Adventure by Will Crowther and

Don Woods [1], adds to those the variation in style that is
exemplified by Raymond Queneau’s Exercises de Style [2], and
enlarges the possibilities of interactive narrative. Adventure is the
canonical first interactive fiction, simulating a cave with treasures
and puzzles. Queneau’s book contains 99 different tellings of the
same story, which is rather boring in and of itself but comes to
life through the play of narrative and other literary styles. One of
the example fiction files that was released with the system,
Adventure in Style, is a more or less direct combination of these
two provocative works.

To understand the motivation behind Curveship, then, it is
important to discuss the reason from creating an interactive fiction
system and the reason for the focus on narrative variation.

1.1 Why Interactive Fiction?
Interactive fiction has been an important part of the landscape of
compute culture since the min-1970s. It was one of the most
popular diversions on time-sharing systems. Then, thanks mainly
to Infocom, but also to the contributions of several other
companies, it was once a dominant form of entertainment
software in the early 1980s. Today, IF does not have much of a
direct presence in the commercial game marketplace, but
innovation in the form continues, thanks to the efforts of
individuals and the availability of free development systems.

An interactive fiction is a type of virtual reality, or simulated
world, presented in a textual interface. Although IF
conventionally uses the otherwise unusual pronoun, “you,” it is
not constructed or operated like a Choose-Your-Own-Adventure
book. Instead, players type short natural language commands, the
result of each action is simulated, and the new situation is
described in text. [3]

Interactive fiction aspires to have human-like dialogue in natural
language, not command-line interaction. Rather than being just a
riff on a largely outmoded interface, necessary for us to learn the
textual interfaces of 1980s home computers, it is a model for how
to interact with computers in a natural, semantically rich way.

Interactive fiction has developed good abstractions of the world
that are effective for text-based exchange. It models aspects of the
world that are important to exploration, figuring out the way a
strange environment or system functions, and demonstrating an
understanding of such unusual workings. With regard to narrative
variation, Curveship was developed to take advantage of an
opportunity that was not realized by existing interactive fiction
systems. But in other regards, Curveship builds on the success of
interactive fiction systems. Specifically, Curveship builds upon
the useful interactive fiction representations that have been
developed over the past 35 years, particularly relying on the way
they were articulated by Graham Nelson in his documentation of
his IF system Inform 6 [4].

The standard world model in interactive fiction, developed over
thirty-five years in academic, commercial, and independent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FDG'11, June 29-July 1, Bordeaux, France.
Copyright 2011 ACM 978-1-4503-0804-5/11/06 ... $10.00.

211

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2159365.2159394&domain=pdf&date_stamp=2011-06-29

contexts, is exemplary. There are a few particular problems that
remain with simulating a world in IF. Good representations of
rope, fire, and liquids (some of the same objects that happen to be
non-trivial to render visually using computer graphics) are
difficult to develop because rope can span locations, fire interacts
with flammable objects, and liquids can be subdivided, poured on
things to wet them, and used in other ways that have odd effects.
More can be done to improve the way IF simulates, but the future
of interactive fiction is not really being held back by the difficulty
in simulating rope. The worlds that can be modeled effectively
right now are rich and interesting enough to supply us with many
different, powerful playing and reading experiences. While world
simulation can be improved, it is not the bottleneck of IF
development. Existing IF provides many good examples of how
to represent different aspects of the world in different, appropriate
levels of detail.

Similarly, the standard IF “parser” is far from perfect at
understanding natural language, but, thanks in part to the
grounding of IF in a simulated world and in part to convention, it
accepts an effective subset of natural language. In the early 1980s,
millions managed to figure out (with the help of manuals, friends,
and trial and error) how to interact with IF. Just as Curveship’s
focus is not on improving the simulated world, it is also not on
improving the parser.

Interactive fiction’s existing capabilities for simulating a world
and accepting natural-language-like input provide a good basis for
this project, which seeks to add a new capability.

1.2 Why Narrative Variation?
The development of Curveship has focused on the level of
narrative discourse for two reasons: First, because the level of
narrating is essential to the power and effectiveness of stories;
second, because modeling the story level has already been done
effectively by interactive fiction.

The reason people find narratives powerful (whether they are
movies, oral stories, novels, or in some other medium) is bound
up in the way they are told. This may seem particularly clear in
modernist fiction, such as William Faulkner’s The Sound and the
Fury. In novels like these, the unusual telling of the story is
foregrounded and is often much more remarkable than the events
themselves. But even in ancient stories such as the Odyssey, the
way the story unfolds — with Odysseus hearing his own story
sung to him by a bard, weeping and concealing his tears, being
recognized, and then finally being coaxed to continue to tale
himself — is extremely important to the effect of the narrative.
Concern for the interesting qualities of the narrative discourse is
not only seen in centuries-old classics or modernist and avant-
garde writing. It can also be seen in Stephanie Meyer's initial
drafts of chapters that retell the Twilight series from Edward
Cullen's perspective.

A very direct demonstration of how interesting it can be to change
the narrative discourse while leaving the underlying story
unchanged is seen in Raymond Queneau’s 1947 Exercices de
Style (which was translated into English by Barbara Wright). In
this extraordinary book, the same unremarkable story, about a
minor confrontation on a bus and catching sight of one of the
people involved later, is told in ninety-nine different ways. The
book was the inspiration for Matt Madden’s 2006 comic 99 Ways
to Tell a Story: Exercises in Style, which is based on a different
but still rather uninteresting sequence of events, in which a
character walks into a room, replies to someone upstairs by saying
what time it in, and stares into the refrigerator wondering what he
was looking for. Madden’s book uses variations specific to the
comic medium (for instance, telling the story in one panel and in
30 panels) in addition to incorporating changes in narrative style.

These two books, by showing many variations side by side, make
a clear case for how vital and expressive the narrative discourse
can be.

As discussed in the previous section, there are already good ways
to model that which exists (the “existents”) in a simulated world.
Developers and programmer/authors have worked to improve this
world model further. For instance, in interactive fiction, as in
gaming generally, much work has been done on creating better
computer-controlled characters, who act within the story world.
Almost no work, however, has been done on creating computer-
controlled narrators, who relate the events within the story world
in the narrative discourse. Authors have done a great deal to
create particular interactive fiction works that embody excellent,
interesting one-off narrators (Dan Shiovitz’s Bad Machine,
Admiral Jota’s Lost Pig, and Jeremy Freese’s Violet are
examples), but until now, none of the general flexibility and
power of the world model has been brought to narrating.

Curveship was created not to improve the way that characters act,
not to facilitate more believable, lifelike or dramatically engaged
characters, but to provide for the first time an array of expressive
computer-controlled narrators. As is the case in the novel,
narrators can be characters within the story (e.g., Marlowe in
Heart of Darkness, Ishmael in Moby Dick) or not (as in, e.g., the
unnamed narrators of The Odyssey and Blood Meridian.) The
narrating and particular narrators constitute a different, orthogonal
dimension from that occupied by characters. This emphasis on
narrative variation is the major aspect distinguishing Curveship
from other state-of-the-art IF systems such as Inform 7 and TADS
3, which have been developed with other directions (such as
natural-language programming, rule-based programming, and
multimedia support) in mind.

2. CURVESHIP ESSENTIALS
In creating a new Curveship game/fiction, an author’s main task is
to define what exists in the simulated world – the “existents” in
the terminology of narrative theory. This means creating a fiction
file, which has as its main components an items list and game-
specific subclasses of the different subclasses of Item. The items
list is converted on startup into a tree; each item except the root
has its parent listed and the resulting graph is checked at runtime
and set up if it is acyclic. Initial actions can also be specified in
the fiction file. So can a “spin,” a way of telling the story. It is
also possible to apply a spin from a separate file.

Curveship was released under a free software license on February
2, 2011 (at http://curveship.com, where some of this information
is available in a different form) with several example fiction files
of different lengths and complexities. They range from
Artmaking, a one-page fiction file that defines a world with one
actor, one room, and two things to Adventure in Style, a complete
implementation of the classic game Adventure with 96 different
possible narrative styles that can be applied based on the in-game
actions of the player character.

2.1 An Example of Interaction
In Adventure in Style, the player more or less directly controls the
narrative style by turning a dial and flipping switches on the
lamp. Generally, there is no restriction on what can change the
narrative style in Curveship. In the example game Lost One, the
player’s commands influence the narrative style more indirectly.
In the very simple Artmaking, there is no way to change the style
except by selecting a spin file on startup or with debugging
directives. The goal of Curveship is to effectively translate a
narrative specification into a grammatical specification and then
into realized text. Curveship does not dictate how that narrative
specification is determined; that is up to the author/programmer.

212

Here is an example of interaction (the “>” texts were typed by the
player) with Adventure in Style:

>get the lamp
 You pick the lamp up.

>turn on the lamp
 I turned the lamp on.

>examine the lamp
 I took a look at the lamp.
 A brass carbide lamp, the kind often used for illuminating

caves. It was shiny and brightly glowing. It displayed the word
MEMOIR and had three switches: a "HESITANT" switch, a
"SURPRISE" switch, and a "VALLEY GIRL" switch. The lamp
also featured a dial which can range from 1 to 12 and was set to 2.

>turn dial to 6
 You select "RETROGRADE."
 Just beforehand, you turned the dial to 6.
 Just beforehand, you took a look at the lamp.
 A brass carbide lamp, the kind often used for illuminating

caves. It was shiny and brightly glowing. It displayed the word
MEMOIR and had three switches: a "HESITANT" switch, a
"SURPRISE" switch, and a "VALLEY GIRL" switch.

The lamp also featured a dial which can range from 1 to 12
and was set to 2.

 That was after you turned the lamp on.
 Earlier, you picked the lamp up.
 That was after you took a look at the building's interior.
 You were inside the building, the well house for the large

spring.
 You saw the keys, the food, the bottle, and the lamp. Water

was in the bottle.

Initially, the narrative style is that of a typical interactive fiction
and that of the original Adventure: The story is being told to the
player character (the “you”) and the narrator is speaking as if
there while the events are transpiring (present tense). When the
lamp is turned on, the narrative style switches to “MEMIOR.”
Turning the dial to 6 switches it to “RETROGRADE,” so that
recent events are related (with appropriate grammatical
adjustments) in reverse order. The changes made by turning the
dial do not affect anything else in the underlying, simulated
storyworld – nothing except for the position of the dial. If an
author/programmer wishes to have some actions affect both the
narrative style and the simulation, that is easily done. But they are
abstracted from one another in Curveship to allow for
independent manipulation.

2.2 World & Concept
The world is the main, simulated universe of the interactive
fiction, which defines the “reality” within which all of the
characters live. One of the main things that distinguishes
interactive fiction from hypertexts, conversational characters, and
story and poetry generators is that they have a simulated world.
So, this is a feature Curveship has in common with other IF
systems, not one that distinguishes it from them.

A concept is a particular actor’s theory of the world, based on
knowledge (as initially represented in a fiction file) and
perceptions (as experienced as the actor moves around and looks
at things). Concepts are almost never complete, and they may be
wrong. They allow the telling of actions and the description of
items to be focalized, that is, to be restricted to what a particular
actor knows and sees.

2.3 What Exists: Items
Item is the Curveship term for “existents” or “objects” –
everything that exists in the simulated world. They must be in one
of five categories, so that they are either Actors, Doors, Rooms,
Substances, or Things.

An Actor is an item that can take action on its own, due to either
code that an IF author has written or a script the author has
dropped in. Any Item can react (that is, any Item can have its own
react method defined) but only an Actor can initiate action
(equivalently, only an Actor or subclass of Actor can have an act
method). Each Actor has a concept; when an Actor acts, the
action is put together using this concept. The player character is
an Actor (or an instance of a subclass of Actor). Although
particular fictions may allow or disallow it, any Actor has the
potential to be commanded and focalized, becoming the player
character.

A Door may actually be a door in the usual sense, or it may be a
passageway or other portal that connects exactly two rooms.
Doors, like Rooms, are all on the first level of the item tree,
directly below the root node. Therefore, they are not children of
either room which they connect, although the logic of visibility
and accessibility assures that they are among the items that can be
seen and accessed from both rooms. A Door can be understood as
a Room that one can only go through, not remain in.

A Room is a discrete location which can have exits leading to
other rooms or to doors. Rooms are all on the first level of the
item tree, directly below the root node.

A Thing is typically an item that is not a location and is more or
less inert. Any item that isn’t a room and doesn’t need to act or
have its own concept is a thing. Things can react when something
is done to them or done in the same room, so that pressing a
switch on a lamp can cause the lamp to react by increasing its
glow.

A Substance is something like a powder or liquid that can be
poured into a vessel but can’t really be carried around otherwise.
Sources provide an endless supply of substances; vessels are used
to contain them. It’s not necessary to define any of the particular
amounts of a substance as items; after defining an overall
substance item and designating other items as sources or vessels,
the rest is done automatically during setup.

The special Actor that is the root of the item tree is Cosmos. This
Item is responsible for earthquakes, power outages, and any
occurrence where the author doesn’t want to model the cause as
its own Actor. The Cosmos can also change the spin, which
allows for a connection between the simulated world and the way
the telling is done.

Curveship has different types of parent-child relationships. This
is the relationship between an item and an item a level under it,
and connected by a link, in the tree. When an actor walks into a
room, he or she becomes the child of the room. If the room moves
(perhaps because it is an elevator) the actor will move with it. If
the lights in the room become brighter, the actor and everything
else in the room will be better illuminated. An apple placed in a
sack similarly becomes the child of the sack and, for instance, is
itself stolen if the sack is stolen.

The item tree’s edges are called link. Each one connects an item
to another item and indicates a specific type of parent-child
relationship. Links are labeled, with the label indicating more
about the relationship. If a person is holding a sack with an apple
inside and wearing a cloak, the sack and cloak are the children of
the person and the apple is the child of the sack. Furthermore, the
link between the sack and the person is labeled “of” (indicating a
possession) and the link between the cloak and the person is “on”

213

(indicating something being worn). The link between the apple
and the sack is “in” (indicating containment). This means it is
straightforward to model a desk that you can put things on (on top
of) and in (in a drawer): It is simply an Item that allows (via its
allow method) some other Items to be in both sorts of
relationships with it, using both types of links.

Typing world tree immediately after starting the Curveship
version of the standard IF example Cloak of Darkness shows all
of the items in this tiny simulated world and described how they
are arranged:

@cosmos: nature []
 @bar: bar [of]
 @message: message [part_of]
 @cloakroom: cloakroom [of]
 @hook: hook [part_of]
 @foyer: foyer [of]
 @person: operagoer [in]
 @cloak: cloak [on]

Typing concept @person tree shows the operagoer’s concept,
which contains only those items that this player character, the
only actor in this simple fiction, knows about:

@cosmos: nature []
 @foyer: foyer [of]
 @person: operagoer [in]
 @cloak: cloak [on]

In this case, it is a simple subset (or subtree), but actors can also
be loaded with knowledge about the world that is incorrect. To
see the item tree change, one can type “remove cloak” and then
check either the world’s or the operagoer’s concept’s item tree
again. The cloak will be “of” the person (indicating possession)
rather than “on” the person (indicating a garment being worn).

2.4 What Happens: Actions
Action indicates a specific, usually intentional action taken by an
actor. A command (such as “get lamp”) usually corresponds to a
single action. As described later, an Action can succeed, be
refused by the actor, or fail. Authors can easily make up new
actions. The representation of actions is the basis of narrative.
There are four categories of actions: Behave, Configure, Modify,
and Sense.

A Behave Action which has no direct effect on the world, but
which an item may react to and which may be narrated. For
instance an actor waving hello would most straightforwardly be
represented with a Behave Action.

A Configure Action changes the position of an item in the item
tree and/or changes its relationship with its parent. So, wearing a
cloak that one is holding is a configure action; so is taking a lamp.

A Modify Action changes the state of an item. For instance, an
actor may turn on a lamp or open a door; those actions are best
represented as modify actions.

A Sense Action is used to represent apprehending an item with a
particular sense, most commonly sight, although sensing using
five sense modalities is supported. As with Behave, an Action of
this type does not by itself change the item tree (which is only

changed by configure) or change any state of any item (which is
only changed by modify).

A concept, like world, contains a list of actions in addition to a
tree of items. To focalize a particular actor, the Teller module
simply narrates based on the corresponding concept. To be
“omniscient,” the Teller uses the concept of the Cosmos, which
has everything in the world in it.

2.5 Successful Actions, Failure & Refusal
Actions have preconditions and may have a postcondition,
indicating that something changes in the world as a result of this
action happening. After an action succeeds, it can be viewed
using the world actions debugging directive and will be
displayed like this:

/ / / has_feature @grate open
/ / / modify_to_different @grate open True
/ / / has_value @grate open False
/ / / can_access_direct @adventurer ['@grate']
/ / / has_value @grate locked False
:19: OPEN (modify) agent=@adventurer direct=@grate
force=0.2 feature=open
 old_value=False new_value=True cause=”OPEN_UP
@grate” start=18
\ \ \ has_value @grate open True

This is action 19, an OPEN action which is of the modify type.
Specifically, it is an action undertaken by the adventurer
(agent=@adventurer) on the grate (direct=@grate) to change its
“open” feature from False to True. Actions can be caused by act
methods (representing the decisions to act made autonomously by
actors), and by react methods (representing quick responses that
any item can produce), and by being entailed by other actions, but
the cause of this one is a command that was typed in and
understood as “OPEN_UP @grate”. The amount of force used is
the default; the action starts at tick 18 of the world’s clock.

There are five preconditions, indicated by the “/ / /” lines. In
order, they state that the grate has to have the open feature (it has
to be an openable item), that this has to be an attempt to modify
its open feature to a different value (so that trying to open an
already-open grate will fail), that the open feature is False to
begin with (meaning that the grate is closed to begin with), that
the adventurer has access to the grate, and that the grate is not
locked. If the grate didn’t have the locked feature – if it were an
openable item that was not lockable – the system wouldn’t add
this last precondition. The second and third preconditions turn out
to be redundant in this case and whenever the feature is
True/False or otherwise two-valued. It would be nice to fix this,
but except for a tiny bit of time spent checking it, there is no harm
to having the extra precondition there.

The one postcondition, indicated by “\ \ \”, is that the grate’s open
feature has a new value, True. That is, after the action has
completed, the grate is open.

An action fails either because some precondition is not met or
because some item in the vicinity prevents it from succeeding. For
instance, “open the grate” fails if the grate is already open. A
message is produced: “You are unable to open the grate because
the grate is open to begin with.” And inspecting the action by
typing world actions shows that preconditions 2 and 3 fail and
that the postcondition does not obtain:

/ / / has_feature @grate open
#####> modify_to_different @grate open True
#####> has_value @grate open False
/ / / can_access_direct @adventurer ['@grate']
/ / / has_value @grate locked False
:20: Failed OPEN (modify) agent=@adventurer
direct=@grate force=0.2 feature=open

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FDG'11, June 29-July 1, Bordeaux, France.
Copyright 2011 ACM 978-1-4503-0804-5/11/06 ... $10.00.

214

 old_value=False new_value=True cause=”OPEN_UP
@grate” start=19
 ##### has_value @grate open True

Even if the grate were closed, the action would fail if some
guardian was in the area and (by means of the another method, a
prevent method) prevented any gate-opening actions.

An action is refused by the player character under a small number
of pre-defined circumstances. Namely, if a player types a
command to go in a certain direction (for instance, “go east”) and
there is no obvious exit in that direction, the actor will refuse.
Beyond this, an actor may have special cases for refusal defined
and associated with its “refuses” keyword. In the Curveship
version of Cloak of Darkness, the operagoer refuses to drop the
cloak anywhere, although it can be hung on the hook in the
cloakroom. This produces the message “You decide not to set the
cloak down because the floor is not the best place to leave a smart
cloak lying around.” Typing world actions shows this
representation of the refusal:

:3: Refused DROP (configure) agent=@person
direct=@cloak force=0.2 new_link=in
 new_parent=@foyer cause=”DROP @cloak” start=2
 ##### parent_is @cloak in @foyer

Unlike a failure, a refusal doesn’t actually represent any physical
action happening in the simulated world. In a failed attempt to
open the grate, the agent probably is exerting some energy and
moving around. Something else may happen as a consequence.
(In Cloak of Darkness, for instance, the message is
unintentionally rewritten by the operagoer if that actor blunders
around in the dark, trying to go in directions where there are no
exits and failing.) But refusals do not correspond to the same sorts
of attempts at action as do failures.

In a particular room, there will simply not be exits in certain
directions. In many cases, it may be clear to any actor that exiting
in those directions is impossible. To indicate a special reason why
there is no exit in a particular direction, one can simply place a
template in the “exits” dictionary of the room. This is the
dictionary that is used in other cases to specify adjacent doors or
rooms. This template will produce a sentence complation such as
“the crack is far too small to follow” that explains why any actor
can’t go in a particular direction.

3. CAPABILITIES OF CURVESHIP
The architecture of Curveship draws on well-established
techniques for simulating an IF world, separating these from the
subsystem for narrating, which includes a standard three-stage
natural language generation pipeline. The system includes
concepts (the representations of the knowledge and perspectives
of focalizers) that are separate from the world model.

The world is the base, authoritative model within the interactive
fiction, the “actual world” from the standpoint of interactive
fiction actors, following the terminology of Marie-Laure Ryan
[5]. This model is one of several, however; there is also a concept,
based on perceptions and experiences, for each actor. Each
concept represents one actor's theory about the “reality” that the
world encodes. The Simulator and world model have been
developed to represent things such as the physical movement of
objects and the configuration of a space in a flexible way. They
are not to richly model emotional and mental qualities, although
they can be used to do this to some extent.

One of the innovations of Curveship is the abstraction of the
Simulator module from the module that does narrating, the Teller.
This separation means that the workings of the world (whether a

door opens or not, where an actor is located, etc.) are abstracted
from the telling of the story. In other interactive fiction systems, a
representation of action is generated when a state changes, as the
simulation is being done. In Curveship, the Simulator produces
and processes first-order representations of actions; then the
Teller determines what (if anything) to narrate depending upon
the spin. Each action is represented as completely as is each item
in the world. Without such a strong, persistent representation of
action, there would be no easy way to accomplish a re-ordering of
events in the telling to produce flashback, flashforward,
retrograde narration, sylleptic (by category) narration, other
anachronies.

The Simulator is completely responsible for maintaining the state
of the world and determining whether or not actions (whether
they result from the player’s commands or from code the
author/programmer has written) succeed. The Teller is completely
responsible for what is narrated – what is described and what
actions are represented. There are other modules in Curveship that
deal with game-level directives (saving the game, restarting,
quitting), with clarifying input that is ambiguous, with
recognizing player input, and so on, but the Simulator and Teller
embody the important distinction that Curveship makes between
the story or content level and the discourse or expression level.
The idea of separating these levels is fundamental to modern
narrative theory. Curveship is based on narratology as developed

beginning in the
1970s. In particular,
the narratology of
Gérard Genette [6, 7]
was a starting point in
development of the
system. Ideas
developed by Gerald
Prince [8] and others
have also been
incorporated.

The Teller module
has its own internal
architecture. Its
organization is based
on a standard three-
stage pipeline for
natural language
generation. The first
stage is the reply
planner, where the
high-level
arrangement of
expressions is

managed. The output of this stage is an ordered tree that, among
other things, indicates the sequence in which these expressions
will finally appear. In the next stage, the microplanner, the
grammatical specifics corresponding to this structure, including
tense, aspect, and number, are determined. Finally, the last stage,
the realizer, produces the particular strings to be formatted and
output.

The narrator is capable of varying several aspects of the narrating.
Among these are Genette’s categories of variation in narrative
tense: order, frequency, and speed. It is also possible to vary
focalization (a type of narrative mood) and time of narrating (a
type of narrative voice). In the remainder of this section, I
describe the system’s ability to vary order and the time of
narrating – two types of variation that are actually closely linked

Figure 1. Ordered tree representations to
allow narrating in the same sequential order,
but for different purposes.

215

from the standpoint of text generation [9]1. To have a computer
generate narrative, it is necessary to define not just different
sequences of events that fall into the categories described by
Genette, but also the particular processes that characteristically
generate these sequences. In other words, formally defining an
analepsis (or flashback) is not enough for narrative generation; it
is also necessary to specify an algorithm that can generate an
analepsis – preferably one that is flexible enough to specify most
or all analepses. That is, the task of generating narrative demands
that we have not only formal models for narrative, but also formal
models for narrating. Characterizations of some of these formal
models, algorithms for re-ordering events, are as follows:

Chronicle: Sort a set of events into chronological order. Saying
that events are arranged chronologically may not be enough to
specify a unique order, because some events may be
simultaneous.

Retrograde: Sort a set of events into reverse chronological order.

Zigzag: This is the process of interleaving sections from period 1
(the “now”) with those from period 2 (the “once”) while narrating
chronologically within each. A passage from Marcel Proust’s
Jean Santeuil provides an example [6]. The “now” and “once”
must be designated along with a rule for moving between
sequences. This could be as simple as “narrate a single event
before switching,” or it could involve specifying that all the
events in a single physical location are narrated in the “now,” then
the corresponding events in the “then,” and then similarly with the
next physical location.

Analepsis: Also called flashback or retroversion, this indicates an
anachronism inserted into a main sequence that is presumably
chronological to begin with. For this process to work, both a main
sequence and the point of insertion of the analepsis need to be
designated. From the standpoint of the analysis of narrative,
measures such as Genette’s reach and extent are useful, but when
generating an analepsis, those measures, which represent the
difference in time and the overall duration of the analepsis, are
not the most useful ones to specify. It is better to specify what
should be included in the analepsis based on features of events.
For instance, “select the most salient event from the first time the
focalizer encountered this character,” or “select the most salient
events that the focalizer has seen happen in this room in the past,
up to three of them.” Of course, to make the latter rule useful, a
rule for determining the salience of events must also be precisely
specified. Given the main sequence, the point of insertion, and a
fully specified rule for selecting events from the past, the process
of ordering events so as to include an analepsis is straightforward.

Prolepsis: To insert a prolepsis, also known as flashforward or
anticipation, the same three inputs are needed: a main sequence, a
point of insertion, and a rule for selecting events from the future.
When some newly simulated events are being narrated for the
first time, there will not be a supply of simulated events waiting in
the future. However, there are still circumstances under which a
prolepsis can occur. An IF author can prepare “inevitable” events
with future timestamps, representing things like the sun going
down or nuclear missiles arriving. Also, there will be plenty of
times in which the main sequence of events being recounted is

1 The basic mechanism for changing order is the same is as
described in the paper cited; Note, however, that many terms
used in the system, along with the name of the system itself,
have changed since that publication and other previous
publications about the system. The terms used in this paper are
those used in the Curveship code and documentation at the time
of the system’s initial release.

from the past, so that future events relative to that span of time
will be available.

Syllepsis: This is the organization of events into categories.
Beyond the original set of events, only a sequence of categories
seems essential for specifying sylleptic narrating. For instance,
such a sequence might have these three categories of events in it:
“the adventurer entering a new area,” “the adventurer defeating a
monster,” and “the adventurer acquiring a treasure.” If all events
are in exactly one category, the categorization will be unique. The
narrator can move through each of the categories and, within each
category, can represent each of the events chronologically. There
is no reason to restrict a sylleptic narration to chronological order
within categories, though. Any principle for ordering based on
time alone (chronicle, retrograde, achrony) can be specified for
ordering the narrative within categories.

Achrony: Ordering events at random seems a suitable way to
produce the type of order needed for achrony.

This describes how events can be rearranged from a chronological
sequence into a narrative one that may not be chronological.
Reordering has been characterized as producing a sequence, but
there are problems with this view, because much structural
information is lost in the flattened representation of the sequence.
An analepsis, for instance, is not well represented by the sequence
3 4 5 1 2 6 7. The sequence of events that is in the past, relative to
the main sequence – the “1 2” in this case – is actually embedded
in the main sequence, which is “paused” while the telling returns
to the past. There is no evidence of this, however, when seven
numbers are presented in a row. The information about the
embedding of “1 2” will usually be necessary to generate a
narrative. When the main sequence is being told in the present
tense, the “1 2” will almost certainly be told in the past. If the
main sequence is already being told in the past tense, there will
almost certainly be some cue that “1 2” occurs at a much earlier
time: a phrase such as “before that,” an explicit reference to the
earlier date, some statement about habitual occurrences in the
past, or a statement in the perfect leading into the analepsis.
Without knowing that “1 2” is embedded, it is difficult to figure
out how to shift the tense appropriately or add such a cue.
Furthermore, using a simple sequence, there is no way to
distinguish this analeptic case from an achronic jumble or from a
sylleptic narration in which “3 4 5” are in the first category, “1 2”
is in the second, and “6 7” is in the third. The representation used
in Curveship distinguishes these three cases, as shown in figure 1.

Even without attempting to generate all of these sorts of
transitions, there is clearly a need to designate more about the
order of events than a simple sequence encodes. Such a
representation should not force the tense of the analepsis to be
different, but it should allow for this difference. It should also
integrate the times at which events occurred into the decision
about tense. Simply associating an arbitrary tense with the main
sequence and another arbitrary tense with the analepsis would not
accomplish this. The grammatical tense should be a result of the
position of the simulated events in time and other essential
parameters. To accomplish this, an ordered tree representation is
used. For this particular analepsis, the tree will have a root node at
the top level, 3, 4, 5, a special node, 6, and 7 at the level below, as
children of the root, and then 1 and 2 at the lowest level, as
children of the special, internal node. This sort of tree is called a
reply structure in Curveship; it is provided within the Teller by
the first-stage reply planner to the microplanner, the second stage
of the pipeline.

The temporal position of the narrating has a special status: “I can
very well tell a story without specifying the place where it

216

happens, and whether this place is more or less distant than the
place where I am telling it; nevertheless, it is almost impossible
for me not to locate the story in time with respect to my narrating
act, since I must necessarily tell my story in present, past, or
future tense” [6, p. 215]. These tenses lead to the “three major
possibilities” for the temporal position of the narrating relative to
the narrated: posterior, anterior, and simultaneous narration [8, p.
27]. While Genette deals with this in his category voice rather
than in order, from the standpoint of generating narrative and
determining grammatical tense, the temporal relationship of the
narrator to events is as important as the temporal relationship of
events to one another. Both must be dealt with jointly.

The tense of a proposed expression is necessary for realization;
fortunately, this tense can be determined from three points in time
(speech, reference, and event time) assigned to the proposed
expression. Furthermore, these points can be defined for each
specific expression using general rules that reside in the reply
structure on these special, internal nodes – they do not have to
each be individually prepared by the author. Tense is determined
using these general rules and a theory that relates speech time,
reference time, and event time to grammatical tense [10]. Three
times are necessary because in a sentence such as “Peter had
gone,” there are three relevant points of time that are needed to
explain the tense: the time at which the sentence is spoken
(speech time); the time at which Peter left (event time), and
another time that is being referred to, in this case, a time after the
event time and before the time of speech, by saying “had gone”
rather than something else, such as “went” or “was going.” This
last is the reference time.

Because all events in Curveship are simulated as happening at
some specific time, Reichenbach’s event time is always available
to the Teller. Instead of requiring this that the other two times be
specified manually for each event, the reply planner uses the
topology of the reply structure to assign those times in a
systematic way across each embedded sequence. Once all the
proposed expressions have been defined with specific values for
these three times, all the necessary information is in place for the
next stage of the Teller to compute the tense using Reichenbach's
formulas. The rules that determine speech and reference time are
general (they do not require that every particular time be specified
or computed by author-written code) but also flexible (for
instance, every analepsis does not have to be told in a different
tense from the sequence it is embedded in). Further details on
how the reordering of events is accomplished are provided in [9].

4. STRING-WITH-SLOTS
The string-with-slots template representation is meant to be a
contribution to interactive narrative and text generation that
balances ease of authorship with narrative flexibility. This is in
contrast to the more powerful but much more elaborate and
difficult to author sorts of abstract syntax representations that are
typically used in computational linguistics research. The string-
with-slots formalism is used to generate the two main types of
text in a typical interactive fiction: description and the
representation of action. This section presents the first full
description of the formalism as it works in the released system.

4.1 Describing Rooms
An IF author would typically write a room description by typing a
string which could begin with something like “You are in ...”
Some IF systems do provide for certain types of slots which are
filled as text is prepared for output. In Curveship, the system is a
bit more complex than is standard in IF but much less complex
than a full abstract syntax representation would be. The idea
behind this “string-with-slots” representation is to offer a

reasonable amount of power and flexibility while still being fairly
easy to compose. As a simple example, consider the description
of the building in Adventure with Style:

[*/s] [are/v] inside _a_building, _a_well_house
for _a_large_spring

This of course produces “You are inside a building...” by default,
but it can produce different strings when different spins are
applied. There are three special things in this template: a slot for a
subject, ending with “/s]”; a slot for a verb, ending with “/v]”; and
some noun phrases that have been very lightly annotated using
underscores. The “*” means “whoever is doing the sensing,” and
[*/s] mean “place whoever is doing the sensing here as the subject
of the sentence.” “[are/v]” is just the verb “to be.” There is no
need to say anything else about that verb, because the other piece
of necessary information (the number) will come from the
subject. Finally, this sentence doesn’t have an object that is
represented by a slot. It does have a few noun phrases that have
been decorated with underscores to make them entities in the
discourse, even though they are not simulated. After the
adventurer enters the building and looks around, a second look
will result is something like “You are inside the building, the
well house for the large spring.” (Emphasis added.) People
typically shift from using the indefinite pronoun to using the
definite one after they have mentioned something for the first
time. Curveship has the capability to do this as well, both with
simulated items and with appropriately decorated noun phrases.

The previous description was written to imitate an existing room
description in a famous work of interactive fiction. Here is
another example, a bit more complex and created with Curveship
in mind, from Lost One:

[*'s] senses [hum/ing/2/v] as [*/s] [view/v]
[@plaza_center/o]

the morning [conclude/1/ed/v]

it [is/1/v] midday [now]

This defines three sentences. When writing a string-with-slots
template, sentences do not have to be capitalized or punctuated -
Curveship provides for that when it realizes text. Again, the “*”
here is whoever is doing the sensing. “[*'s]” means the possessive
form of whoever is doing the sensing, which could end up as
“your,” “the visitor's,” “the punk's,” “my,” or several other things.
“senses” is simply present as a plain word, written as part of the
string. “[hum/ing/2/v]” represents the verb “to hum.” Since the
subject of the sentence isn't specified, “/2” has been added to
specify that “hum” is plural. “/ing” is also added to specify that
the progressive should be realized. This can produce “Your senses
are humming...” along with other variations.

Then, “[*/s]” indicates that the sensor appears as a subject of the
phrase coming up. “[view/v]” is the verb “to view.” Nothing else
needs to be specified about it. Finally, “[@plaza_center/o]” will
generate a noun phrase naming the plaza center; it is an object,
hence the “/o]” ending.

“[conclude/1/ed/v]” is a singular verb (hence the presence of the
“/1”) and is to be realized as perfect (thus, “/ed”). This provides
“The morning has concluded” along with variations.

Finally, [is/1/v] is the singular verb “to be.” In almost all cases,
verbs should be specified by using their infinitive form with the
“to” removed: [eat/v], [drink/v], [take/v], [drop/v], and so on. The
system understands “is” and “are” as indicating “be,” however.
That allows the Adventure in Style room description to begin
“[*/s] [are/v] inside”; it does not need to be written “[*/s] [be/v]
inside.”

217

Finally, “[now]” is a deictic word, one that refers to the situation
of the telling. When one is telling a story in the present tense,
narrating it as it happens, it is possible to use “now,” as in “I’m
here, I’m walking up the pathway now ...” If this person were to
retell that story from somewhere else, later, in the past tense,
using more or less the same language, he or she would want to
change the “now” to “then” and the “here” to “there”: “I was
there, I was walking up the pathway then ...” Curveship alters
“[now]” and “[here]” appropriately based on whether or not the
narrator is speaking as if “here” “now” during the telling of the
story.

4.2 Representing Action
The core of narration is the representation of action. After all, a
text that just describes something isn’t a narrative; it takes the
representation of different actions to bring temporality, causality,
and all the other interesting properties particular to narratives into
play.

An example of the representation of action is seen in the special
template for representing the “block” action. This one is particular
to Adventure in Style, which has various guardians that block the
adventurer:

[direct/s] [are/not/v] able to get by [agent/o]

This template reverses the usual object and subject: According to
the action, the “agent” is blocking the “direct” (the direct object),
and should be the subject. But this changes the construction so
that “direct” is not able to get by “agent.” The way Curveship
represents sentences isn't rich enough to allow the system to
automatically convert between active and passive constructions,
but authors can write templates to have actions represented
however they like. This template doesn’t include the verb “block”
– there is no requirement that the action’s verb appear; the
template can have what ever the author likes in it. Finally, “/not”
is present in this template. It is one of the “bits” after the verb
“are,” indicating that this verb is to be negated.

Here is another action representation, this one one of the
straightforward built-in ones, for the verb “touch” with an indirect
object:

[agent/s] [touch/v] [direct/o] with [indirect/o]

With the appropriate agent, direct object, and indirect object it
will produce “You touch the gelatinous cube with the ten-foot
pole” and many variations. This template is extremely similar to
the template for “drink” with an indirect object:

[agent/s] [drink/v] [direct/o] from [indirect/o]

The only difference is the word in the verb slot and the pronoun.
Touching with a tool is best expressed using “with,” while
drinking from a source should be expressed using “from.” By
themselves, these brief representations of action may not seem
very interesting. But they appear in the context of other actions
and can be narrated in different orders and in different groupings,
not to mention recounted within flashbacks and in other ways.

5. CONTINUING INTO NARRATIVE
So far, the process of developing of Curveship has suggested new
ways to understand narrative that were prompted by the
construction of a generative narrative system. Genette’s sequence
of events, reordered in the telling, was not adequate as a
representation of how events are to be told; an ordered tree
representation was effective, however. From the standpoint of
generation, it was not possible to separate the consideration of the
order of events from the consideration of time of narrating, since

both narrative aspects are needed to determine grammatical
specifics. Aditionally, although this topic has not been covered in
this paper, the exploration of narrative distance undertaken in
Lost One suggests that distance is well-understood as being
composed of more primitive narrative aspects, and that changes in
time of narrating, order, and narratee can increase or decrease
distance.

With the release of this narrative variation system, researchers,
interactive fiction author/programmers, teachers of narrative
theory, and designers of narrative systems (whether games,
literary works, or research projects) have the opportunity to apply
Curveship in ways that interest them. For the teaching of narrative
theory, for instance, Curveship offers a “narrative theory lab” in
which students can interactively change the way the computer
narrates, think about what will happen as a result of their change,
and see the results. From the standpoint of research in expressive
AI, interactive storytelling, and computational creativity,
Curveship offers all the standard affordances of an IF system, the
novel ability to control the narrative discourse, and
implementation of the system itself and game/fiction files in a
standard programming language that has rich modules available,
supports interprocess communication, and is easily brought online
(via Twisted). By integrating the text-generating capabilities of
Curveship with computational creativity system that generates
both plots and narrative style, for instance, it could become
possible to realize legible textual output that can then be
evaluated.

Many of the principles of narrative theory that are encoded in the
system are applicable across media: In any narrative system, for
instance, events are presented in a particular order which may or
may not correspond to the order in which they occurred in the
story world. Curveship offers the ability to quickly vary order and
other narrative parameters without developing numerous assets.
By providing a perspective on the narrating, the system offers the
creators of narrative systems for different purposes (narrative
theory education, gaming, literary development, research, etc.) a
tool, a component of a larger system, and new lens through which
to consider their work.

6. REFERENCES
[1] Crowther, Will and Don Woods. Adventure. 1976.

[2] Queneau, Raymond. Exercises de Style. 1947.

[3] Montfort, Nick. “Riddle Machines: The History and Nature
of Interactive Fiction.” A Companion to Digital Literary
Studies, pp. 267–282. Eds. Ray Siemens and Susan
Schreibman. Basil Blackwell, 2007.

[4] Nelson, Graham. The Inform Designer’s Manual, 4th Ed. The
Interactive Fiction Library, 2001.

[5] Ryan, Marie-Laure. Possible Worlds, Artificial Intelligence,
and Narrative Theory. Bloomington UP, 1991.

[6] Genette, Gérard. Narrative Discourse: An Essay in Method.
Trans. Jane E. Lewin. Ithaca, NY: Cornell UP, 1980.

[7] Genette, Gérard. Narrative Discourse Revisited. Trans. Jane
E. Lewin. Ithaca, NY: Cornell UP, 1988.

[8] Prince, Gerald. Narratology: The Form and Functioning of
Narrative. Berlin: Mouton. 1982.

[9] Montfort, Nick, “Ordering Events in Interactive Fiction
Narratives.” Intelligent Narrative Technologies: Papers from
the 2007 AAAI Fall Symposium, pp. 87-94. AAAI Press,
2007.

[10] Reichenbach, Hans. Elements of Symbolic Logic. Random
House, 1947.

218

