
The ppg256 Series of Minimal Poetry Generators

Nick Montfort
Massachusetts Institute of Technology

77 Massachusetts Ave, 14N–233
Cambridge, MA 02139 USA

nickm@nickm.com

ABSTRACT

I discuss the four Perl poetry generators I have developed in the

ppg256 series. My discussion of each program begins with the
entire 256 characters of code and continues with an explication of
this code, a description of aspects of my development process, and
a discussion of how my thinking about computation and poetry
developed during that process. In writing these programs, I came
to understand more about the importance of framing to the
reception of texts as poems, about how computational poetic
concepts of part of speech might differ from established linguistic

ones, about morphological and syntactical variability, and about
how to usefully think about possible texts as being drawn from a
probability distribution.

Keywords
form, minimal systems, poetics, poetry generation, programming,

text generation, writing under constraint

1. THE ppg256 SERIES
Since 2007, I have been working on a series of very short Perl
poetry generators. This ppg256 series [1] is comprised of systems
that are simply 256 characters of code. They run in a standard Perl

interpreter, using no external data sources, online or local, making
use of no special libraries and invoking no other programs. These
tiny programs are investigations into language, poetics, and
computation.

My work has been assisted by the constrained form I set for
myself, which has helped me to focus on the computational
manipulation of strings to generate poetic language. This has kept
me from delving into complicated (and even rather simple)
statistical models, crawling the Web or other large-scale data

sources to seek patterns, and implementing elaborate AI systems
employing planning or search. In part, I undertook this project as
an alternative to a large-scale creative text-generating system that
I was working on and have continued to work on [2]. The ppg256
series, which is also an ongoing project, currently consists of four
programs. The fourth of these was written to output all the control
characters needed to drive an LED sign, so that the 256-character
program by itself is sufficient to control this display.

The way the ppg256 programs actually operate is represented very
poorly, if not completely misrepresented, by single poems shown
as sample output. Such output suggests that an excerpted product,
perhaps ready for submission to a literary magazine, is the
ultimate goal of this project. This is not the case. This perspective
can lead one to overlook the importance of the code (as human-
readable and as machine-interpretable) and the texture of the

continually-generated language that is produced by a running
program. Ideally, the programs in this project should be obtained
by the reader as source code (all of it is provided in this paper,
although within each program, the lines will need to be joined to
make one long line) and should be run. The output should then be

read for a while. By way of introducing these programs in a paper,
however, and to show that these programs can at least be
imagined as having different styles and voices, here are four
example poems, one generated by each of the four programs:

the rank

 pots at rats
 rand to pang
 dink no mash

the pans

 sin
 the shin skits skit
 pit & chill
 skill
 shit
 grin & chill
 of fill
 kit twits to chin
 twin

the__boyman
and
one__godape
top_it

misflip on flowlon, guy

In the discussion that follows, I describe what some of my goals
were as I started on each program. I then explicate each program
and describe the development process and how this constrained
programming practice is an investigation into poetics,

computation, and language. Specifically, as I describe the four
programs, I address why programming is part of my practice, why
I use Perl rather than some other language, why I have chosen to
constrain the programs to be only 256 characters in length, why I
believe that drawing from a distribution of possible texts is an
interesting way to engage with and conceptualize the production

© Digital Arts and Culture, 2009.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission from the author.
Digital Arts and Culture, December 12–15, 2009, Irvine, California, USA.

of language, and why I selected a special type of display for use
with the fourth program in the series. I characterize this project as
it relates to the work of other poetry generator developers. I also
provide specific examples of things I have learned about poetry
and language through this practice, findings I do not believe I

would have reached by simply writing poems or by using standard
computer science and computational linguistics methods.

While I am concerned with how a computer system can be read
and understood as creative, my project serves to invite and
provoke readers. It is not an attempt to contribute to the theory of
creativity. My project deals with the poet’s cognition in
composition, the programmer’s cognition in programming, the
reader’s cognition in understanding how a program works, and the

reader’s cognition in reading poems. These are matters of poetics
(of both human language and code) and aesthetics (of both code
and human language). ppg256 does not attempt to contribute to
cognitive science; Furthermore, I have not drawn on any insights
from cognitive science in the work I have undertaken so far.
Rather, this project is an attempt to inquire about how we think as
we undertake these types of production and reception, and about
the nature of computation and the English language, from a

standpoint that is a complement to scientific perspectives: that of a
creative digital media practice. This paper offers no theoretical
conclusions. Instead, it tries to document my practice and to serve
as a trace of my journey so far, mentioning some ways in which
my thinking has developed as I have developed these programs.

2. ppg256-1

perl -le 'sub b{@_=unpack"(A2)*",pop;$_[rand
@_]}sub w{" ".b("cococacamamadebapabohamolab
uratamihopodito").b("estsnslldsckregspsstedb
snelengkemsattewsntarshnknd")}{$_="\n\nthe".
w."\n";$_=w." ".b("attoonnoof").w if$l;s/[au
][ae]/a/;print;$l=0if$l++>rand 9;sleep 1;red
o}'

The same code, with added whitespace and comments:

sub b{ # Return a bigram stored in a string
@_ = unpack"(A2)*",pop;
$_[rand@_]}

sub w{ # Return a word: space+bigram+bigram
" ".b("cococacamamadebapabohamolaburatamihop
odito").b("estsnslldsckregspsstedbsnelengkem
sattewsntarshnknd")}

{ # Main loop
$_ = "\n\nthe".w."\n";
$_ = w." ".b("attoonnoof").w if $l;
s/[au][ae]/a/;
print;
$l = 0 if $l++ > rand 9;
sleep 1;
redo}

2.1 Goals
As I wrote in discussing an earlier version of this program [3], my
new year’s poem for 2008, written at the end of 2007, was a

computer program. The poem I distributed on New Year’s was an
earlier version of the code that was just quoted. Developing this
program involved attempts to drive process intensity up, keep

program size down, and uncover what significant and yet very
simple moves could be made by a poetry generator.

Specifically, I was interested in creating a tiny program that
would generate texts that people would recognize as poems. I
wanted the program to generate a wide variety of words — to

have a large vocabulary — but I was willing to have syntactical
regularity, words of similar or the same length, and words that did
not appear in a dictionary, as long as most words were dictionary
words and as long as the others looked somewhat like English-
like.

2.2 Explication of Code
A subroutine, b(), is defined first; then another subroutine, w(). At
a high level, b() picks a bigram (a two-letter sequence) from a
string, and w() calls b() twice to generate a four-letter word with a
space in front of it. The main loop of the program follows these
subroutines and is surrounded by braces. In that loop, it is the
“redo” at the very end that causes the program to loop forever —
or at least until the program is interrupted by the user pressing

ctrl-C, by a power outage, or by something else outside the
program itself.

The main loop begins by assigning a value to “$_” — the Perl
special variable representing what I’ll call the default string. (The
full, proper name is “the default input and pattern-searching
space.”) What gets assigned to this string is two newlines, the
word “the”, a four-letter generated word with a space in front of it,
and another newline. This value is a title, something like “the

rank” with two newlines before it and one after it.

The next part of the main loop obliterates the title, replacing it
with a line if the program isn’t on “line zero.” That is, if $l has a
non-zero value, it overwrites the default string with a space plus a
four-letter word, a short closed-class word (“at”, “to”, “on”, “no”,
or “of”), and another space plus four-letter word. The result is
something like “pots at rats”. The next part of the main loop
cleans up a bit by replacing “aa”, “ae”, “ua”, and “ue” with the
letter a. This improves the line in some cases, changing some

four-letter strings (most of which don’t correspond to English
words) to three-letter words (most of which do). The “print;” then
prints out whatever is in the default string; it will have a newline
appended because the “-l” option to Perl is used. The next bit of
code increments $l (which has the value 0 to begin with), checks
to see if it is greater than a random number between 0 and 9, and
sets $l back to 0 (to start generating a new poem) if it is. Except
for a pause of a second, that’s all there is before the “redo” at the

end.

The b() subroutine unpacks a string (such as “attoonnoof”) into
two-letter sections and picks one of those (such as “at”) uniformly
at random. This bigram is then returned.

The w() subroutine joins together a space, two letters from the
first long string, and two letters from the second long string. The
first string,

“cococacamamadebapabohamolaburatamihopodito”

holds 21 bigrams, the first of which is “co” and the last of which
is “to”. The second one,

“estsnslldsckregspsstedbsnelengkemsattewsntarshnknd”

holds 25 bigrams. Each of the 25 bigrams in the second string are
chosen uniformly at random by the program, but the bigrams in
the first string are not equiprobable because “co”, “ca”, and “ma”
are repeated; there are only 18 unique bigrams represented. This is
a reasonably inexpensive way to define a non-uniform probability

distribution, one in which certain choices are more likely. I
selected these two sets of bigrams by considering the most
frequent two-letter beginnings to four-letter words and their most
frequent two-letter endings. The words generated by w() can be
found in a dictionary about 60% of the time, and even when they
are not, they often still seem to be plausible as English words or
names. The substitution of “aa”, “ae”, “ua”, and “ue”, done in the
main loop, improves this percentage.

2.3 Development Process
I began, inspired by Hugh Kenner and Joseph O'Rourke’s
Travesty [4] and Charles O. Hartman’s work with that system, by
looking at how I might compactly and interestingly encode the
distribution of English letters — the unigram distribution — to

generate strings that looked English-like. (I have also had
Hartman’s engaging discussion of his poetry generation
development [5] in mind as I wrote this paper.)

Although my finished program does not use external data sources,
and was never intended to, I did make use of such sources to
determine properties of English and of the sort of language I
wanted to generate. I took a text file edition of Moby Dick and
used the frequency of letters to determine a unigram distribution. I

wrote several true one-liner Perl programs (not having settled on
the 256-character constraint yet) to print letters and spaces,
approximating this probability distribution. I figured out how to
do this somewhat compactly and cleverly. But as Kenner and
Hartman, and Claude Shannon before them, found, this method
produces at best a distant shadow of English, very seldom
resulting in a word and certainly not in anything with more
structure. The process was like dumping a bag of Scrabble tiles on
the table. For instance, this encoding of an approximate English

unigram frequency distribution in a 65-character Perl program
only produces English words about 3% of time, and these are
almost all one- and two-letter words:

perl -e'{print substr("we cleft mud"." in ea
rshot "x3,rand 54,1);redo;}'

A decent model for language of course does not generate each
letter independently, as the line of code above does. It represents
the conditional probability of letters as they appear in a sequence.
For instance, “u” is extremely likely as a next letter if the current
letter is “q”. But building a conditional probability model into a
very tiny program, a one-line (or even slightly longer) Perl

program, seems impossible. There is too much information —
26 26 probabilities — to pack into a few bytes.

One alternative to this limited technique would be to find
extremely representative data to put into the program itself,
something that was a distillation of English. I looked into whether
I could find any kind of encodings of English which were
themselves English — for instance, words or sentences whose
substrings were all, or almost all, also English. I also sought
words that could be beheaded (that is, their first letters could be

removed) multiple times to create new words. An advantage of
this approach, seen also in the one-liner above, was that the data
contained in my tiny program would end up being legible itself. It

was a nice idea, but getting a tiny program to generate language
even without using a legible encoding of data was hard enough.
Also, my work on this first program was constrained by time as
well as space; I needed to finish some version by January 1.

As I worked further, I began looking more deeply into the

accomplishments of Perl golfers, who strive to write Perl
programs that are as compact as possible [6]. They start with a
completely specified task, which is not what I was doing, but in
trying to compress a reasonably complex program I was
attempting something similar. I approached the problem more in
the manner of a writer of obfuscated code [7], choosing something
interesting to do in an unusual way. However, I was not trying to
make my program intentionally difficult to understand, only to

provide myself with a useful constraint on program size that
would lead me to focus on important techniques. Realizing that 80
characters would probably be too few for this first effort, I settled
on a limit for program size in bytes that was a fairly small power
of two. Keeping the program to 256 characters meant that it would
be small enough to be copied and pasted easily by others; it was
also a small enough target that I was able to do much of my work
on the command line itself, without recourse to a text editor.

Finally, I discovered a word generation method that was compact
but which relied on the structure and position of bigrams (pairs of
letters) within words. I decided to generate only four-letter words,
and to see how well the initial and final bigrams (the only parts of
these words) would match up if the most frequent ones were
joined at random. My work with non-conditional unigram
generation, and some other not very effective attempts, hadn’t
managed to even reach 10% in terms of generating “real”

(dictionary) words. My first, rough attempt to join pairs of
bigrams, on the other hand, produced dictionary words 40–50% of
the time. Of course, getting a high accuracy with word generation,
by itself, isn’t a challenge. A program that prints “Hi” forever
produces English words 100% of the time. A suitable generator of
this sort needs a balance between the high quality of English-like
output (many words being recognized as English or appearing in a
dictionary) and diversity of words it can produce. The four-letter
word generation technique, although it could only produce four-

letter words and only a subset of them were in a large English
lexicon, was remarkably diverse in its output.

By this point, observing screenfuls of vaguely English-like words
had brought to my attention that a stream of words is not easily
recognized as a poem. This can be addressed in framing the
program itself — text linking to the program or a placard on an
exhibit can assert that the program is a poetry generator — but I
hoped that the program itself could output text that would be seen

as poem-like, even without such cues. I began working to have the
generator create lines. As I did this, I developed a clever generator
of short words that used the string “atonof” and compacted five
two-letter words into a six-letter string. As it happened, the less
clever generator using the string “attoonnoof” occupied fewer
characters overall. It is the one used in the version shown here.

Even with lineation, the system didn’t seem done. Printing an
endless stream of lines also didn’t seem to be proper poetry

generation, since this output isn’t easily recognized as a poem. So,
compacting what I had done even further, I added the highest-
level, outer loop to title the poems and determine a number of
lines for each. The addition of titles and an overall stanza/strophe
shape to the poems was, I believe, a very important step. The title
provided something for the poem to be read against, opening the

lines to meaning. I have heard poets claim that titles have the
opposite effect, which they may, in particular cases. This
experience with adding titles to a poem showed me that titles are
not always limiting and can invite deeper reading and more
engagement and interest by providing an additional, sometimes

powerful, juxtaposition.

There were other ways of potentially augmenting ppg256-1, some
of which I might have been able to fit into even my first version of
the program. A sort of schematic rhyme, for instance, can be
accomplished fairly easily by just holding the last bigram in
memory and re-using it. The results, however, read like doggerel.
A program that does this seems to be “cheating” by making up
words to rhyme with earlier ones, making the effect of the

invented words plodding, even though these same words could be
appreciated as interesting in the version without schematic rhyme.
I also looked into varying the length of words so that every line
did not have four letters, two letters, and four letters. In the first
version of the program, I rejected this because the fixed pattern 4-
2-4 pleased me and I saw no easy way to pleasingly vary the
length of the longer words. When I was later able to change
certain four-letter strings into three-letter words and improve the

system’s diction, I included this capability, introducing a slight
variation into the lines.

2.4 Programming and the Use of Perl
Given the compelling presentation and ongoing discussion of
concepts such as expressive AI [8] and expressive processing [9],

it seems that it should not be necessary to justify the writing of a
computer program as part of a literary or artistic practice.
Regardless: I have been developing text-based programs as part
of my writing practice because my interests are in exploring
computation, language, and their relationship. I am not
investigating database or hypertext structures; rather, I am
considering what computation can do to produce language. A
poetry generating program seems appropriate for this
investigation. Among other things, as the story of these first

programs shows, this form compels me to trade off data for code
(or vice versa) and to make each of these suited to the other.

Perl, the Practical Extraction and Report Language (also
sometimes called the Pathologically Eclectic Rubbish Lister), was
created for text processing and is amenable to being used for
offhand tasks. It is possible to write “one liners” in Perl, at the
shell prompt, and to use these to solve many text-processing
problems, avoiding the need to even save and separately run a

program. There are also existing traditions of creative and
compressed programming in Perl, namely, the obfuscated
programming tradition of creating “JAPHs” [7] and the
competitive program compression of Perl golf [6]. These rich
practices (although they are young, compared to the traditions of
poetry) and my study of particular short Perl programs have
helped me to think in new ways about this project, just as poetics
conintues to contribute to my design goals and directions and just

as I have considered particular techniques and poems in iterating
each program to produce new sorts of output.

3. ppg256-2

perl -le 'sub p{split/,/,pop;$_[rand@_]}{$_=
p("sw,-aw,&w,saw".", "x$l);s//p("aw,w")/e;s/
/ /g;$_="\n\nthe s\n"if!$l;s/s/ws/;s/a/p("a,
the,to,of")/e;s/w/p("b,ch,f,gr,k,p,sh,s,sk,s

p,tw")."i".p("ll,n,t")/eg;s/(b|p|f)i/$1.p("a
,i")/e;print;$l=0if$l++>6+rand 9;sleep 1;red
o}'

The same code, with added whitespace and comments:

sub p{ # Pick from a comma-delimited string
split/,/,pop;
$_[rand@_]}

{ # Main loop
$_ = p("sw,-aw,&w,saw".", "x$l);
s//p("aw,w")/e;
s// /g;
$_ = "\n\nthe s\n"if!$l;s/s/ws/;
s/a/p("a,the,to,of")/e;
s/w/p("b,ch,f,gr,k,p,sh,s,sk,sp,tw")."i".p("
ll,n,t")/eg;
s/(b|p|f)i/$1.p("a,i")/e;
print;
$l=0 if $l++ > 6+rand 9;
sleep 1;
redo}

3.1 Goals
Having found a way to generate a large number of different
words, many of them English and almost all English-like, I
became interested in generating poems that were less regular in
several ways: in the shapes of their strophes, in the syntax of their

lines, and in the length of words that they generated. I also wanted
to bring in additional connections between the sounds of words,
schematically or otherwise. I wondered if an interesting program
could be developed that would only output dictionary words
rather than “making up” words. If I could develop a program that
did some of these things, I was willing to end up with one that had
a much smaller vocabulary than did ppg256-1, as long as variation
of other sorts made the system interesting enough.

3.2 Explication of Code
ppg256-2 uses a different technique for splitting apart strings and
choosing one section of them. Because variation in word length
was important in this program, it was not appropriate to build
words out of two two-letter components. Instead, parts of words
are selected from a comma-delimited list, represented as a string,

such as “b,ch,f,gr,k,p,sh,s,sk,sp,tw”. The short words are selected
from “a,the,to,of”. Each long word is made from a one- or two-
letter beginning, the vowel “i” (which is then replaced by “a” once
in a while), and a one-or-two letter ending. Finally, a long word
may have an “s” at the end, which has the effect of pluralizing the
word (if it is read as a noun) or conjugating it (if it is read as a
verb). Thus, long words can be three, four, five, or six letters in
length.

The code first defines the subroutine p(), which is used to pick a
section of a comma-delimited string. The rest of the code is the
main loop, which ends in “redo”, as the main loop of ppg256-1
also does. The first statement assigns to the default string ($_)
either “sw”, “-aw”, “&w”, “saw”, or “ ” (a space). As lines are
generated and the value of $l increases, more and more spaces are
added to the distribution, and it becomes more and more likely
that a space will be chosen instead of one of the first four options.

Next, a substitution on the empty string adds either “aw” or “w”
to the beginning of the default string. If the default string

contained “sw” before, it holds either “awsw” or “wsw” after this
substitution. If it held a space beforehand, it holds either “aw ” or
“w ” afterwards.

At this point the syntax of the line has been determined; the short
string will be expanded and words will be put in place. The next

statement adds a space between each character in the default
string, making, for instance, “awsw” into “a w s w”. The next
statement obliterates all of this work, replacing the default string
with the syntax used for a title, if $l is 0 and the process is
therefore on line zero. Whether that happened or not, the
expansion of the syntax continues in the next statement, which
replaces “s” with “ws”, so that “a w s w” becomes “a w ws w”.
Then, “a” is replaced by one of four short words. If the one

chosen is “of”, the new default string would be “of w ws w”.
Next, a substitution statement replaces each “w” in the string with
a long word generator (pick a prefix, add “i”, pick a suffix) and
runs the generator, so that each “w” ends up replaced by a long
word. The result might transform “of w ws w” into “of grin pits
chip”. The last statement before the print statement sometimes
(with 50% probability) changes the vowel “i” to “a”, only if it
occurs after a p, b, or f. The substitution would happen to the

word “pits” half the time; the “i” would remain, otherwise. If the
substitution does happen, the line becomes “of grin pats chip”.

After these manipulations, the default string (containing either the
line or the title) is printed, $l is reset to zero if it exceeds a random
number that is between six and fifteen, the program pauses for a
second, and the loop is repeated.

3.3 Development Process
In working on this second program, I developed a word generator
that used a small set of consonant prefixes and suffixes and,
initially, just the vowel “i”. The productivity of this generator
seemed sure to disappoint. Without the “a” rewrite, it could
generate only 12 3 = 36 words, or 72 words if both the base
forms and the forms ending in “s” are counted. But even a set of
36 base forms proved remarkable in certain ways. All sorts of

alliteration and rhyme arose naturally when words were drawn
from this distribution. When drawing from just the base forms,
one rhyme is guaranteed in every set of four words, since there are
only three possible word endings. The lack of regularity and the
presence of more than a handful of words meant that the result
was lively in some ways. With the “a” rewrite added, the words
were no longer monotonously univocalic, and it was possible to
hear the vowels as more interestingly assonant. New half-rhymes

appeared, improving the texture of sound.

Two approaches to providing “global” features in poetry
generation — coherence, adherence to a theme, the return to an
earlier statement in closing — are exemplified by Jim Carpenter’s
ETC [10] and Eric Elshtain and Jon Trowbridge’s Gnoetry [11].
ETC’s architecture influenced ppg256-1 and is to some extent
reproduced in miniature in these programs [12]. But the ppg256
programs do not follow ETC in providing high-level, global rules

for composition that can direct the program to “wrap up” a poem
with reference to what has been written earlier. The global
features of ppg256-2 poems come together more in the way that
Gnoetry, using statistical methods, accomplishes a consistent
texture in poems. That system, trained on a corpus of writing
(usually from a well-known fiction writer), produces language
that recalls earlier writings and that coheres because traces of

earlier topics, themes, and styles persist though the process of
computer composition using those texts.

In the ppg256 series, my engagement is not, for instance, with
Joseph Conrad via his statistically modeled Heart of Darkness,
but with the properties of the ordinary English lexicon: the most

common word beginnings and endings for words of a certain type,
for instance. Although I did use a particular text file with inflected
English words, my questions and techniques are directed more at
English than at any one dictionary or lexicon. The very common
word beginnings and endings that I selected would be very
similar, if not identical, if I had used a different file with a slightly
different set of English words.

In adding the occasional “a” rewrite, which happens only half the

time and only when a word contains “bi”, “pi”, or “fi,” I made the
distribution of possible long words non-uniform. That is, some
long words are more likely than others. This is the case for a
different reason in ppg256-1, where three bigrams are repeated.
While having a non-uniform distribution is not necessary for an
aesthetic result, and is not required by any poetics of probability,
it seems to reflect certain things about our experience. It
particularly seems interesting, and in some ways naturalistic, to

have a program select from some equiprobable choices and some
that are more rare, as ppg256-2 does.

The length of lines in a poem is determined in ppg256-1 by a
conditional probability distribution, the sort that is useful for
modeling language but difficult to encode in a short space. As
noted in the explication, each possible syntax is not selected with
the same probability; as the poems grows, short lines become
more likely. This very simple conditional probability

implementation gives some not entirely regular shape to each
poem’s strophe, providing each with a tendency to taper off.

The distinctions between the output of ppg256-1 and that of
ppg256-2 are certainly due to differences in the data they work
upon (stored as strings), and do not result from computational
differences alone. To emphasize process intensity and to
investigate the importance of computation is not to dismiss the
need for the selection of good source text for a program to work
upon. One of my insights into my own practice that I have

developed further in the ppg256 series is the importance of jointly
developing data and code, or, at least, of defining the data with
particular sensitivity for the ways in which the code works. The
sounds of the limited set of words produced by ppg256-2 work
well in the context of a program that generates a variety of lines
and strophe shapes. The lexical variety of ppg256-1 can be
effectively framed by more regular lines.

3.4 Short Words and Long Words
The ppg256 programs are written from a perspective that is
poetic, and that comes from programming and writing practice,
rather than being linguistic in any ordinary, scientific sense. They
encode this perspective in the categories of words that they define
and the range of words they generate.

Educated speakers of English are well aware of the categories
adjective, noun, verb, preposition, and article, which are almost
always employed in computational linguistics systems.
Distinctions between these are certainly necessary for determining
the grammatical structure of sentences, but systems which do not
do full parsing often still tag words with their parts of speech, a
process which can be done very accurately in most cases. An

industrial-strength language generator will also need to make
these part-of-speech distinctions. Such distinctions are usually not
made in 256-character programs, however.

Because the chosen length constraint makes it impractical to have
separate generators for each part of speech, my programs use

more offhand (but still linguistically relevant) categories. The
“short words” that they generate are not restricted to articles or
prepositions — pronouns are included in the “short words” of
ppg256-3 — but they are all what are known as closed-class
words. In a closed-class category of words, new words cannot
easily be coined by speakers. Nouns and verbs are open-class
words, allowing “blog,” “staycation,” and other terms to be
invented as the need arises. A new preposition or article cannot be

added as easily, though.

ppg256-2 even more clearly takes advantage of the capability of
English nouns to almost always be used as verbs. This program,
like ppg256-1, collapses nouns and verbs into “long words,” but
adds syntax and inflection that works well in this new category.
Long words generated by this program can be read as nouns or
verbs depending upon their situation in a line and whether they
are inflected with “s”.

To keep the short word generation code compact, ppg256-2
generates only “a”, never “an”. (A good bit of additional code
would be required to determine if the following long word began
with a vowel and to make the adjustment.) Instead of doing this
more elaborate form of short word generation, ppg256-2 simply
generates only long words that begin with a consonant so that
“an” is never needed.

3.5 The 256-Character Limit
Italo Calvino said “an Oulipian writer ... runs faster when there
are hurdles on the track.” There is a strong current of constrained
writing practice represented most prominently by those in the
Oulipo, including Calvino, Harry Mathews, George Perec, and
Jacques Roubaud, but also developed in the work of Walter
Abish, Christian Bök, William Gillespie, Mary Godolphin, Doug

Nufer, Jackson Mac Low, George Starbuck, and Michel Thaler.
And, of course, there are more traditional limits placed by
particular poetic forms (such as the sonnet) and by poetic meters.
Creating a poem of a certain length (and width) is hardly unusual.
Enforcing a compositional constraint at the level of character or
letter is, if somewhat less traditional, not a novelty from the
standpoint of writing practice.

There are also many precedents for this sort of constraint in digital

media practice, however. Formats and protocols impose their own
sometimes austere limits. The 140-character limit of Twitter is
even more restrictive than the 160-character maximum of the
SMS message. Even when the technology does not demand it,
digital media contests of all sort limit the size of entries to provide
challenge and to focus contestants on the task at hand. There are
size limits on one-line and longer programs in the International
Obfuscated C Code Contest [7], for instance. This sort of

limitation is particularly in play in the demoscene, where coders
work to develop process-intensive audiovisual programs that will
dazzle viewers and amaze fellow programmers. On demoscene
site pouet.net, numerous length-constrained demos are available,
in 32b (bytes), 64b, 128b, 256b, 512b, 1k, 4k, 8k, 16k, 32k, 40k,
64k, 80k, 96k, 100k, 128k, and 256k sizes.

After seeing what could be done with shorter programs, and aware
of the advances that larger-scale systems have made, I determined
that in this series, programs would be 256b (256 characters) in
length. This limit is a power of two, as “natural” for the computer
as is a multiple of ten for the digital human. This size allows for

variety in syntax, vocabulary, and strophe shape, but compels me
to determine where computation will be spent and requires that
effort be expended for a variety of words to be produced. As
ppg256-2 showed, 256 characters is enough room for different
sorts of generators to be fashioned. Programs of this size,
however, are short enough to type in if one starts from a printout
or wants to get a program running on a non-networked computer
without removable media. And, they are short enough to seem

comprehensibile, based on their length. Whether or not a reader
knows Perl and wants to trace through the code, he or she can at
least immediately believe that the code can be understood instead
of imagining the generator as an imposing black box full of
tremendous, complicated machinery.

4. ppg256-3
perl -le 'sub p{(unpack"(A3)*",pop)[rand 18]
}sub w{p("apebotboyelfgodmannunorcgunhateel"
x2)}sub n{p("theone"x8)._.p("bigdimdunfathip
litredwanwax")._.w.w."\n"}{print"\n".n."and\
n".n.p("cutgothitjammetputransettop"x2)._.p(
"herhimin it offon outup us "x2);sleep 4;red
o}'

The same code, with added whitespace and comments:

sub p{ # Pick a 3-letter substring from a
 # string 54 (18*3) characters long
(unpack"(A3)*",pop)[rand 18]}

sub w{ # Return a word: 3-letter + 3-letter
p("apebotboyelfgodmannunorcgunhateel"x2)}

sub n{ # Return a name: article (optional) +
 # adjective (optional) + word
p("theone"x8)._.p("bigdimdunfathiplitredwanw
ax")._.w.w."\n"}

{ # Main loop
print"\n".n."and\n".n.p("cutgothitjammetputr
ansettop"x2)._.p("herhimin it offon outup us
 "x2);
sleep 4;
redo}

4.1 Goals
In writing this program, I hoped to at least strongly suggest a
narrative, if not directly tell one, by portraying an action involving
characters. My interest was still in poetry generation rather than
story generation, and in the sounds of the language, and how
memorable that language is, rather than in creating a full fictional
world with psychologically authentic characters. I was also
particularly interested in exploring the use and generation of

conjunction, juxtaposition, compound words, and kennings.

4.2 Explication of Code
The p() subroutine that begins the program does the sort of
picking that b() in ppg256-1 does: It unpacks a string into an array
of three-character elements, then selects one of eighteen elements

at random. The subroutine after this, w(), returns a three-letter
word by picking from the string

 "apebotboyelfgodmannunorcgunhateel"x2

That is, two copies of that string connected one after the other.
Then, the subroutine n() produces one type of line. It begins with

either the word “the”, the word “one”, or nothing; an underscore
(“_”) follows; a three-letter adjective from the string
“bigdimdunfathiplitredwanwax” or nothing is after that; and then
an underscore, two three-letter words (without a space between
them), and a newline are added. For instance, “the_fat_boyman”
and “__elfgod” can both be generated by this subroutine.

The main loop prints one of the n() lines, then a line with just the
word “and”, and then another n() line. This is followed by a line

with a verb phrase such as “cut_it ” or “jam_out”, made by
selecting a three-letter section from each of two strings. The
program then pauses for four seconds and repeats the main loop.

The use of underscores instead of spaces provides some
typographical variety and might signal to some that this work is
meant to be poetry rather than fiction. It leaves the text legible,
however, and saves a few characters of code. Each time the
underscore appears in the code, the replacement of that character

with a space would require a double quote on each side and would
add two characters to the program.

Because the p() subroutine always picks one element numbered 0
through 17, it can be used to always pick one of nine elements (by
putting a “x2” at the end of a string with nine choices in it) or it
can be used to return a blank half the time and to pick one of nine
elements the other half of the time (just pass in the string with
nine choices without “x2” at the end). It can also be used to print

“the” or “one” almost all of time but to print nothing occasionally,
as when “theone”x8 is passed in.

4.3 Development Process
I had been doing some non-digital writing with three-letter words
and was intrigued by the possibilities of a three-letter lexicon. At
the same time, I was interested in juxtaposing whole words (not

bigrams or consonants) to create new ones. I was thinking of the
venerable English poetic element called the kenning, a condensed
metaphor such as guthwine (warfriend), which indicates a sword.
In contemporary writing, striking compound words have been
used by Cormac McCarthy, particularly in his Blood Meridian.

ppg256-1 assembles its long words out of bigrams whose
semantics are not evident. ppg256-2 uses consonants which are
also not usually thought of as meaningful in and of themselves.

Both character names and verb phrases are assembled in ppg256-3
differently, using short words. I found to my surprise that a very
limited set of three-letter words (nine words that could be
anthropomorphic, including “eel”, “man”, “nun”, and “ape”)
seemed much less repetitive when one selection from the list was
concatenated with another (to make, for instance, “eelman”,
“manape”, “nunman”, or “eelape”). Of course, there are 81
possibilities for such words rather than nine, but these possibilities

come about by picking twice from the same small set of options.
Despite the lexical limitation, the meaningfulness of the three-
letter words let them combine into unusual and provocative longer
words. A “manape” is not an “apeman” and even characters such
as a “manman” and an “apeape” invite further thought, perhaps
because of their odd insistence. There are also what seemed at

first to be contradictions in coinages such as “nunman”. These can
be resolved a few different ways by a reader.

Similarly, different closed-class words placed after three-letter
verbs form very different verb phrases, creating much more
variety than one might expect from a list of nine verbs. To put up

is not the same as to put in, or to put her or him or it, or to put off,
or, of course, to put out. The poem sometimes lacks a direct object
when it seems that it should have one, but if the reader’s mind is
active, imagining who the characters could be, why they have
come together, and what they are starting to do, this is hardly a
problem.

4.4 Randomness
Few in digital media have had much to say about randomness;
authors, artists, and critics alike seem to find its occurrence in
work, and certainly the term itself, distasteful. Scott Rettberg,
however, has described how the use of randomness relates to
Dada techniques and can be explored and discussed rather than
avoided [13]. Essentially, a program that does something at

random — or, more correctly, that approximates this using a
pseudorandom process — chooses an element from a distribution.
If it picks one element out of a set such that every element is
equally likely, it is choosing uniformly at random. If some
elements are more likely that others, the probabilities for each
choice are non-uniform.

As an alternative to choosing an element at random, a program
can output every combination of elements one after the other. This

is what Brion Gysin and Ian Sommerville did in their permutation
poems, one of which included every permutation of I AM THAT I
AM [14]. Another exhaustive program of this sort is John F.
Simon, Jr.’s Every Icon, which will, if it continues running,
eventually display every 32 32 black-and-white icon [15]. Clearly
the exhaustive approach has its particular rhetoric, but it is hard to
see how programs like these should, in every case, be privileged
over ones that sample repeatedly from a distribution and offer
something different to the reader or viewer. The exhaustive

program shows that every alternative either has been or
potentially can be computed. The random program gives a
different, more individuated sense of what a distribution is like.

Nanette Wylde’s Storyland is a simple and amusing program to
randomly generate very short stories [16]. Talan Memmott’s Self

Portrait(s) [as Other(s)] assembles images and somewhat
authoritative-sounding curatorial texts from fragments, also at
random [17]. The effect of these two pieces would be entirely

different and significantly reduced if they were converted into
exhaustive programs that generated every possible combination
one after the other, making a slight change each time. The effect
of a random program can be like overhearing bits of a
conversation, perhaps a conversation that is most interesting when
only partially overheard. It can be more along the lines of meeting
a few people from a particular country and less like having
everyone from that country arrayed in an enormous gymnasium.

In terms of their poetics, random programs demand that an author
define interesting distributions over texts rather than simply
writing a single text that is appropriate.

5. ppg256-4
perl -e 'sub c{$_=pop;$_[rand split]}sub w{c
("b br d f fl l m p s tr w").c"ad ag ap at a

y ip on ot ow"}{$|=print"\0\0\0\0\0\1Z00\2AA
\33 b".c("be de mis re pre ").w." ".c("a on
the that")." ".w.w.", ".c("boss bro buddy do
gg dude guy man pal vato")."\4";sleep 4;redo
}' > /dev/alpha

perl -le 'sub c{$_=pop;$_[rand split]}sub w{
c("b br d f fl l m p s tr w").c"ad ag ap at
ay ip on ot ow"}{$|=print "\n".c("be de mis
re pre ").w." ".c("a on the that")." ".w.w."
, ".c("boss bro buddy dogg dude guy man pal
vato")."\4";sleep 4;redo} #No LED sign versi
on'

The same code, with added whitespace and comments:

sub c{ # Choose from space-delimited string
$_=pop;$_[rand split]}

sub w{ # Return a word: beginning + ending
c("b br d f fl l m p s tr w").c"ad ag ap at
ay ip on ot ow"}

{ # Main loop
$|=print "\n".c("be de mis re pre ").w."
".c("a on the that")." ".w.w.", ".c("boss
bro buddy dogg dude guy man pal vato")."\4";
sleep 4;
redo} #No LED sign version

5.1 Goals
I hoped that it would be possible to generate interesting text given
the further constraint of a very small display and the need to write
special code to drive this display. The use of such a display would
make this program particularly amenable to gallery presentation,
allowing it to reach a different group of viewers. I also wanted to
see if I could develop a voice that was gendered and addressing

someone of a particular gender. Finally, I wanted to continue to
explore how the combination of different syllables into words
could work to create a variety of English-like sounds.

5.2 Explication of Code
The main unusual feature of this program should be the series of

control characters that, along with the redirection of the output to
a special device, are needed to drive the LED display. (These
begin with a series of five null characters, each indicated by “\0”.)
In the main loop, the return value of the print statement is
assigned to $|, forcing the output buffer to be flushed each time.
This does not need to be done in every loop, but it does not hurt
anything to assign to $| repeatedly and it saves space to do so. To
save a few characters, split is used without any arguments here
and the strings that it splits are delimited by spaces. Otherwise,

this is a program like the others that has two subroutines and a
main loop.

The c() subroutine picks an element at random from a space-
delimited list. The w() subroutine uses c() to build a three or four
letter “word,” which is perhaps better called a syllable, since it is
actually used as a component of a word. The main loop then emits
the necessary control characters and prints the following: an
etymological prefix (“be”, “de”, “mis”, “re”, or “pe”) most of the

time (the space at the end means that the prefix will sometimes be
omitted); a syllable; a space; either “a”, “on”, “the”, or “that”; a

space; two syllables; a comma and a space; and a term from this
list, stored as a space-delimited string:

"boss bro buddy dogg dude guy man pal vato"

The whole poem is output at once, as with ppg256-3, and there is
a four-second pause before control returns to the beginning of the

main loop.

5.3 Development Process
As noted earlier, this is the first ppg256 to draw a poem uniformly
at random from a set of poems. That is, of the 174,653,820
possible poems, each one is equally likely to appear. The need to

include LED sign control codes, which made the available space
for poetry generation even tighter, discouraged me from creating a
more varied distribution. Also, I noted that only one poem would
be seen at once on the LED display, and that a poem would be
gone forever after four seconds, so a gallery visitor would
probably not even have time to share one with a friend before the
next poem superseded it. A rare treat of some sort would present
itself in temporal sequence, but not as part of a spatial display.

For a text generator or other aesthetic program to draw from a
uniform distribution is not itself a flaw, just as a non-uniform
distribution does not by itself make for a wonderfully aesthetic
program. The question is whether the distribution is appropriate to
the goals of the project. In this case, each text is some sort of
command or request that is nonsensical but interesting-sounding,
and definitely English, and that closes with a familiar term of
address. The texts combine etymological prefixes with less

sensible syllables, leaving the reader to imagine what is being
requested by this strange speaker and why. The lack of some
occasional rare surprise in terms of form does not seem to me to
be a failing.

The set of terms used to conclude the utterance were chosen to be
terms of address that are actually used by people, but also to
suggest a racial and gendered identity. Racially marked terms
such as “dogg” and “vato” can be used by people of any race in

addressing people of any race, but however they are used, they
cannot help but remind a reader or listener of race. All of the
terms of address are gendered male; even “buddy,” which seems

to have come from “brother,” “pal,” which etymologically can be

traced to the Sanskrit “bhr t ” (brother), and “boss,” from the

Dutch “baas” (manager, foreman), the diminutive of which is used

to address very young boys. They are “real words” in the sense

that they appear in English dictionaries, as will seldom be the case
with the two other long words in the poem. But they are also real
in that they more or less unambiguously situate the addressee as
male, strongly suggest that the speaker is male, and remind us that
words have other important contexts and have their heritage

within particular social and cultural communities. In all of these
ways, they contrast with the more playful and exploratory
constructions that occur earlier in the poem.

I was originally quite interested in having one of the terms of
address — perhaps one that occurs only very rarely — be
“motherfucker”. This ending to the short poem would have been
both provocative and, I thought, appropriate to the type of voice
that I was trying to shape. But the 256-character constraint and the

size of the display made it implausible for me to include a very
long term along with code to have it appear infrequently. The term
“mofo” sounded comedic in comparison and didn’t seem to fit.
However, I am pleased that the voice of this generator is at least

slightly homophobic and can generate the syllable “fag,” exactly
the sort of syllable a brusque, masculine voice, issuing a
command and speaking to another male, might say. This
unpleasant component of utterance, occurring almost as a side
effect of a generation process that produces a variety of English

syllables, will perhaps invite similar reflections as would an
occasional “motherfucker,” without seeming to be a surface
gimmick appended as an afterthought.

5.4 LED Sign Display
Whether the area of practice is called new media, digital media,

computational art, digital writing, electronic literature, or
something similar, it is not essentially about the screen. Early
games and literary projects on the computer were apprehended
and interacted with via Teletypes and other print terminals. Sound
works and text-based works accessed through text readers show
that screens are not required for digital art overall or for
interactive electronic writing specifically. While an LED sign is a
matrix of points, each of which can be illuminated, the difference

between this type of display and the usual high-resolution
projected image or backlit screen helps to de-emphasize the visual
display as a component and to suggest that the focus of the project
is elsewhere, on the computation. Having the system print its
output would do something of the same thing, but at the cost of
suggesting that ink and paper are the privileged channel for the
transmission of poems and that the system was put together to use
this venerable means of publication.

Computational art of all sorts cannot help but repurpose
instruments and systems, since computers are manufactured to
turn the gears of commerce, industry, and the military. There is
special pleasure, however, in obtaining a used LED sign that has a
lottery advertisement still in flash ROM and transforming it into a
window into language, poetry, and computation.

6. ASSESSING MINIMALITY
The programs in the ppg256 series are not minimal in the
mathematical sense: it is possible to write poetry generators in
even fewer characters. But they are very concise, and the size
limit adhered to in creating them has helped me to avoid certain
pitfalls. If these poetry generators produce aesthetically pleasing
and interesting output, it is not because they have a large store of
data and are simply shoveling lines onto the screen from that

store. If they build a discernible voice, it is not from the statistical
properties of existing texts or from the accumulation of dozens
and dozens of different rules. Any success these programs have
must come from a few instructions which can be read in a moment
and can be completely discussed in the space of a page.

There are, certainly, some questions that minimal generators are
better at answering than others. They show how a sort of “naïve
linguistics” can be developed, a useful and telling simplification

from a poetic perspective. But just as they deal with and help to
reveal some aspects of English (such as nouns can almost always

be used as verbs), they are probably not well-suited to working
deeply with other features of the language (such as English has a

large number of loan words from a variety of other languages).
They seem to be poorly suited to subtly deploying allusions and
references or to certain types of etymological play. And they are
not very good at unrolling either a powerful progression of

symbols or a complex narrative.

Minimal poetry generators, however, constitute important probes
and round out our tray of poetic instruments. While larger systems
have their place, programmer/poets, particularly those working on
larger-scale poetry generators, can clearly benefit from examining
language by using tiny, complete generators.

7. REFERENCES
[1] Montfort, N. 2008–2009. ppg256 (Perl Poetry Generator in

256 characters). On nickm.com.
http://nickm.com/poems/ppg256.html

[2] Montfort, N. 2009. Curveship: An Interactive Fiction System

for Interactive Narrating. In Proceedings of the NAACL
HLT Workshop on Computational Approaches to Linguistic
Creativity (Boulder, Colorado, June 4 2009) CALC-09, 55–
62. http://www.aclweb.org/anthology/W/W09/W09-2008.pdf

[3] Montfort, N. 2008. ppg256-1 Discussion. On nickm.com.
http://nickm.com/poems/ppg256-1_writeup.html

[4] Kenner, H. and O’Rourke, J. 1984. A Travesty Generator for
Micros. In BYTE 9 (12): 129–131, 449–469.

[5] Hartman, C. O. 1996. Virtual Muse: Experiments in
Computer Poetry. Wesleyan Univ. Press., Middletown, CT.

[6] splinky. 2000. Announcing the First Annual Perl Golf
Apocalypse. On PerlMonks.
http://www.perlmonks.org/index.pl?node_id=21442

[7] Montfort, N. 2008. Obfuscated Code. In Software Studies: A
Lexicon, ed. M. Fuller. MIT Press, Cambridge, MA, 193–
199.

[8] Mateas, M. 2001. Expressive AI: A Hybrid Art and Science
Practice. In Leonardo 34 (2): 147–153.

[9] Wardrip-Fruin, N. 2009. Expressive Processing: Digital
Fictions, Computer Games, and Software Studies. MIT
Press, Cambridge, MA.

[10] Carpenter, J. 2007. Erica T Carter 3 Beta.
http://etc.wharton.upenn.edu:8080/Etc3beta/ Offline as of
2008.

[11] Elshtain, E. and J. Trowbridge. 2007–2009. Markovian

Parallax Generate. http://mchainpoetics.wordpress.com/

[12] Carpenter, J. 2008. Does size really matter? On The
Prosthetic Imagination.
http://theprostheticimagination.blogspot.com/2008/01/does-
size-really-matter.html

[13] Rettberg, S. 2008. Dada Redux: Elements of Dadaist Practice
in Contemporary Electronic Literature. In Fibreculture
Journal 11.

http://journal.fibreculture.org/issue11/issue11_rettberg.html

[14] Gysin, B., ed. J. Weiss. 2001. Back in No Time: The Brion
Gyson Reader. Wesleyan Univ. Press., Middletown, CT.

[15] Simon, J. F. Jr. 1997. Every Icon.
http://www.numeral.com/eicon.html

[16] Wylde, N. 2006. Storyland. In The Electronic Literature
Collection, Vol. 1.
http://collection.eliterature.org/1/works/wylde__storyland.ht

ml

[17] Memmott, T. 2006. Self Portrait(s) [as Other(s)]. In The
Electronic Literature Collection, Vol. 1.
http://collection.eliterature.org/1/works/memmott__self_port
raits_as_others.html

