
Shaping Stories and Building Worlds on
Interactive Fiction Platforms

Alex Mitchell

Communications and New Media Programme
National University of Singapore

alexm@nus.edu.sg

Nick Montfort
Program in Writing & Humanistic Studies
Massachusetts Institute of Technology

nickm@nickm.com

ABSTRACT

Adventure game development systems are platforms from the

developer’s perspective. This paper investigates several subtle

differences between these platforms, focusing on two systems for

interactive fiction development. We consider how these platform

differences may have influenced authors as they developed

systems for simulation and storytelling. Through close readings of

Dan Shiovitz’s Bad Machine (1998), written in TADS 2, and

Emily Short’s Savoir-Faire (2002), written in Inform 6, we

discuss how these two interactive fiction authoring systems may

have influenced the structure of simulated story worlds that were

built in them. We extend this comparative approach to larger sets

of games, looking at interactive wordplay and the presentation of

information within the story. In concluding, we describe how

critics, scholars, and developers may be able to more usefully

consider the platform level in discussions of games, electronic

literature, and digital art.

Keywords

Platform studies, software studies, interactive fiction, authoring,

interactive storytelling, adventure games, object-oriented

programming, wordplay, paratexts.

1. INTRODUCTION
There are many adventure game development systems that

provide mechanisms for defining a simulated world, the user

interface, and ways of displaying graphical or text fragments.

These systems are platforms that developers select to facilitate the

creation and distribution of games. They include special-purpose

programming languages for interactive fiction (text adventures),

such as Inform 6 and TADS 2, which have been freely available

and widely used since 1996, as well as Inform 7 and TADS 3,

both released in 2006.

Because conventions are well established in both text and

graphical adventure gaming, competing systems provide very

similar high-level capabilities to author/programmers. Our

investigation, therefore, is of subtle platform differences in

adventure game development, particularly in the development of

interactive fiction. We focus on how these differences may have

influenced authors as they created games that involve simulation

and storytelling.

We offer close readings and analyses of function, considering

adventure games developed in two commonly used authoring

tools. We begin with close reading of two interactive fictions. Dan

Shiovitz’s Bad Machine (1998), implemented in TADS 2,

simulates an intricate, systematic world full of robots, made of

components and functioning together in curious ways. The world

model acts in ways that are mechanical and nested, making the

code’s class structure seemingly evident as one plays the game. In

contrast, Emily Short’s Savoir-Faire (2002), written in Inform 6

and of similar complexity, exhibits less obvious inheritance and

compartmentalization. This game offers the possibility of magical

relationships between objects that have similar appearance,

objects which can be linked by the player character. Inform 6 uses

attributes and properties more heavily, and sub-classing less often,

to determine behaviour, an approach which relates to the type of

similarity which governs the game’s magic system. We follow

this comparison with an extension to other games, comparing

these games in terms of the use of interactive wordplay and the

ways in which information is organized within the game.

We conclude by describing how critical and scholarly practice is

able to better take into account the platform level and the

development system when it comes to the analysis of games,

electronic literature, and digital art. We also consider these

platforms from the perspective of creators who are choosing a

development system, noting some less-than-obvious ways in

which these systems might influence the shaping of stories and

worlds.

2. Background

2.1 Adventure Games and Interactive Fiction
Text-based adventure games, or interactive fiction [6], are text-

based simulations that present a spatial representation of a world.

The player, or interactor, types in text commands to a “parser”,

which interprets the interactor’s commands. Responses are given

to the interactor in text. Typically, the text presents a second-

person description of the simulated world and the actions of the

interactor (see Figure 1). The simulation of the world is persistent,

and actions taken by the interactor alter the state of the world.

Interacting with a text adventure often involves solving puzzles to

accomplish some goal. A narrative is told in the process.

In the example in Figure 1, taken from Graham Nelson’s 1996

reconstruction in Inform 6 of Will Crowther’s Adventure (1976),

the interactor’s character is standing at the end of a road in front

of a small brick building. The interactor types the command `enter

building` to the parser, which responds by updating the position of

the character in the simulation of the game world, and displaying

a description of the new location. In the new location, the

interactor asks for more information about one of the objects in

the world (examine lamp), and then chooses to pick up the lamp

© Digital Arts and Culture, 2009.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission from the author.
Digital Arts and Culture, December 12–15, 2009, Irvine, California, USA.

(get lamp). As with the change of location, this second

command changes the state of the simulated world, moving the

lamp from the building to the character’s “inventory”. Finally, the

interactor examines the contents of her inventory by issuing the

command inventory. This interaction is a typical example of a

session with a text adventure game.

Historically, adventure games can be traced back to Will

Crowther’s Adventure, written in 1976 on a PDP-10. This original

text adventure was expanded by Don Woods, which was quickly

ported to other platforms. The first commercial adventure game,

Scott Adams’ Adventureland, a loose adaptation of Adventure,

quickly followed, and the 1980s saw a range of successful

commercial releases by companies such as Infocom and Sierra

On-Line. After the demise of the commercial text adventure,

graphical adventure games such as Lucasarts’ Maniac Mansion

and the Monkey Island series continued to offer similar puzzle-

based spatial simulations, with text representation replaced by

graphics. These graphical adventure games form part of the

trajectory leading, through games such as Mystery House, King’s

Quest, and Myst, to modern games such as NeverWinter Nights,

Bioshock and Mass Effect. At the same time, the wide availability

of free development systems such as TADS and Inform has

nurtured a healthy independent community of developers of text-

based adventure games [1, 4, 6].

2.2 Platform Studies
The study of new media artifacts can be considered on five levels

[9]. The first, reception/operation, focuses on the experience of

the work. This encompasses approaches such as reader-response

theory and reception aesthetics. The next layer, interface,

concerns the interaction between the user and the core of the

program, and the ways in which this impacts the use of the

program. This includes fields such as human-computer interaction

(HCI) and Bolter and Grusin’s notion of remediation. The third

layer, form/function, looks at the core of the program: the rules of

a game, the nature of a simulation, the abilities of computer-

controlled opponents, and so forth. Approaches such as game

studies/ludology, cybertext studies, and narratology are chiefly

concerned with this layer.

The fourth layer, code, involves the study of the source code of a

program, and organizational and individual capabilities for

software development. This includes looking at the comments,

variable names, program structure, and choices made when

writing a program, and is largely the domain of software

engineering and new fields such as software studies. Finally, the

platform layer is the abstraction layer beneath the code,

underlying all the above areas. Platform can range from a standard

or specification document, to a computer operating system,

programming language or an environment on top of an operating

system. Basically, a platform can be whatever it is that the

programmer takes for granted when developing a program, and

the user is required to have to use that particular software [9].

2.3 Related work
There have been a few critical discussions of interactive fiction

that consider the implementation of the work. Most notably, in

“Somewhere Nearby is Colossal Cave: Examining Will

Crowther’s Original “Adventure” in Code and in Kentucky” [4],

Jerz talks about the cultural and social background of Adventure:

“Adventure” was written for fun and shared for free; it

was the cultural product of an educated, puzzle-loving,

and fundamentally altruistic geek culture. Had it been

better suited to the expectations of the non-technical

public, it would likely have been less interesting to the

community of computer specialists and entrepreneurs

who responded by creating their own variations.”

Jerz goes on to present a detailed discussion of the code, looking

at the verbs and the help text and comparing the original Crowther

version with Woods’ later version. He examines the different

features and details added by Woods. He also talks about the

actual cave system that Adventure is based on, presenting a

detailed discussion/ “multimedia intertextual analysis” of the

game, map, and transcript. He extensively discusses the date of

the game’s development. While this analysis did not explore

Fortran or the PDP-10 in depth, this type of close reading and

bibliographic work shows a useful approach to studying a work as

code for a particular platform.

3. STRUCTURING THE IF WORLD
In this section we consider Dan Shiovitz’s Bad Machine (1998)

and Emily Short’s Savoir-Faire (2002), using these close readings

to investigate the ways in which the platform used to implement

an interactive fiction influences how the author structures the

world within the work. Bad Machine (1998), implemented in

TADS 2, simulates a factory filled with different types of robots.

The robots are made of various standard sorts of components

which themselves can be of different subtypes. The game looks

like code (and error messages, and the outputs of an erroneous

program, thanks to the unusual way that text is presented) but it

also acts like an object-oriented program in very overt ways,

presenting agents who are evidently of different subclasses and

who are made of parts that are of different subclasses. In contrast,

the similarly complex Savoir-Faire (2002), written in Inform 6,

does not exhibit class structure as clearly. It features a notion of

sympathetic magic as a way of creating behavioural relationships

between objects, along with a system for recalling past episodes.

Inform 6, unlike TADS 2, makes heavy use of attributes and

properties to determine behaviour, an approach that relates to the

type of similarity that governs the game’s magic and remembering

systems.

Figure 1. Interacting with a text adventure.

3.1 Bad Machine
In Bad Machine, the player controls Mover #005, a robot in a vast

hive-like factory/warehouse who has suddenly developed the

ability to act independently. On the surface level, Bad Machine

may seem to be little more than a pastiche of computer code and

other computer-like texts (see Figure 2). However, there is a

deeper sense in which Bad Machine resonates with, and is heavily

influenced by, the platform in which it is written.

The output seems to be code or “codework,” with some of the

messages appearing to be status messages and erroneous outputs.

It perhaps reflects Mover #005’s confusion and malfunctioning

circuitry and effectively puts the reader in the position of the main

character [7]. However, there is more than the surface play of

confusion going on here. To the north is a salvager-class machine,

and, as the interactor rapidly discovers, there are many other

robots moving around the world of the Warehouse. Each of these

robots behaves in different ways and executes its routines with

robotic efficiency. The structure of the world, and its inhabitants,

exhibit an inherently code-like, object-oriented nature, in a rather

deep sense.

Specifically, modularity and the concept of an interface that form

an integral part of object-oriented programming can be seen in the

structure of the inhabitants of the Warehouse. As seen in Figure 2,

Mover #005 has a number of properties: power, mobility, and so

on. It also consists of a number of modular parts: a torso and a

head plus 6 legs. The player will soon discover that it is possible

for these parts to be removed and interchanged with other parts.

Once a part has been attached to the player’s character, the

character inherits the properties and behaviours of that part.

For example, there is a puzzle early in the game where the player

is confronted with a dark passageway that Mover #005 cannot

enter, as it is unable to see in the dark. However, another robot, an

“energizer,” happens to have night vision. By removing the head

from the energizer, removing the player character’s head, and then

attaching the energizer’s head to Mover #005, the player can solve

this puzzle (see Figure 3).

Not only the surface appearance, but also the structure and form

of Bad Machine conveys an object-oriented, code-like aesthetic.

3.2 Savoir-Faire
The world of Emily Short’s Savoir-Faire is more organic and

magical. In this game, the player controls a young man who has

returned, heavily in debt, to his childhood home, which he

discovers has been abandoned.

Written in Inform 6, Savoir-Faire contains an interesting system

of “sympathetic magic, called “Lavori d’Arcne”, which lets the

player link objects together based on similarities between the two

objects, such that, for example, what happens to one object will

also happen to the other object. This linking process succeeds or

fails based on how “similar” the objects are. For example, it is

possible to link a white, painted, openable teapot with a pair of

white, painted, openable doors (see Figure 4).

This linking mechanism is consistently implemented, and does not

appear to be hard-coded to specific, special cases that fit within

the puzzle or story within Savoir-Faire. In fact, the player can

attempt to link any object to any object, and the rules of the

simulated world will apply. For example, attempting to link the

same teapot to a little, grimy, linen (but openable) bag seems as

Figure 3. Attaching a part to Mover #005.

Figure 2. Bad Machine’s heavily code-influenced prose

Figure 4. Linking a white, painted, openable teapot to

white, painted, openable doors is successful..

though it would succeed, if only the two objects were a bit more

similar (see Figure 5).

In the case where objects seem to have nothing in common, such

as in an attempt to link the teapot to a clove of garlic, the

complete failure of this attempt serves to re-enforce the

consistency and completeness of the simulation (see Figure 6).

Savoir-Faire comes across as a more organic world, and not only

because it is filled with household objects rather than robots. In

Savoir-Faire, the visual and formal similarity of objects, rather

than their compartmentalization and their place in a hierarchy, is

the dominant feature.

4. IF DEVELOPMENT SYSTEMS
From the previous analysis of form and function within Savoir-

Faire and Bad Machine, it is evident that there are differences in

the way that the two works approach the simulation of the story-

world. Bad Machine contains a very mechanistic, object-oriented

world, whereas Savoir-Faire’s world is one of similarity and

sympathetic magic. What about the platforms could have

influenced the authors to take these very different approaches?

We investigate this by looking closely at TADS 2 and Inform 6.

4.1 TADS 2
TADS 2, released for free in 1996, is an object-oriented

programming language by Michael J. Roberts. It was designed

specifically to support the creation of text-based interactive

fictions.

The most important concept in TADS 2 is that of the object. A

TADS 2 work basically consists of a set of code objects, each of

which represents a physical object (or part of an object) in the

game world. Every object belongs to at least one class. The notion

of objects and classes is a basic principle in object-oriented

programming. Classes define types or categories of things, such

as “animal”, “vegetable” or “mineral”. In most object-oriented

programming languages, objects are defined as instances of a

specific class. As explained in the introductory chapter of the

TADS 2 Author’s Manual [12], “An object’s class defines how

the object behaves and what kind of data it contains.” Each object

has a number of properties and methods, which may be inherited

from its class, or may be unique to this object. Properties contain

data that tells TADS 2 about the object. Methods contain code that

can be executed, typically providing access to and updating this

data. Special properties such as noun and adjective tell the parser

how a player can refer to an object.

In TADS 2, as in many object-oriented programming languages, a

class can be a sub-class of one or more other classes; these are its

super-classes. Any properties or methods of these super-classes

are inherited by the sub-class. These properties and methods may

be used directly, or the sub-class can override them, creating its

own unique versions. This allows, for example, a programmer to

create an “animal” class, which can have sub-classes “cat” and

“dog”, each of which would share the common attributes of an

animal, but would provide specific behaviours unique to cats and

dogs. Inheritance and object-orientation are addressed very early

in the TADS 2 manual; object classes are mentioned in the first

paragraph of the line-by-line discussion of the sample game.

TADS 2 includes a detailed class library, which contains a

number of predefined classes, such as item (a standard item which

can be, for example, picked up and dropped), fixeditem (which

cannot be taken), surface (which can support other objects), and

chairitem (which can be sat on). To create new objects with

specific behaviours, the author can sub-class from one or more of

these pre-defined classes and override behaviours as desired.

For example, a bench could be defined as follows:

bench: chairitem
 sdesc = “bench”
 ldesc = “The cold metal bench is, at least,
somewhere to rest.”
 noun = ‘bench’
 location = startroom
;

The first line, bench: chairitem, defines the new object,

“bench”, to be a sub-class of the chairitem object. The new

object will inherit all the properties and methods of the

chairitem class: the ability to be sat on, to support other objects,

and so forth. The properties listed characterize the specific

properties of a bench: its short description (sdesc) and long

description (ldesc), which will be used at various different times

by TADS to present the object to the player; the noun property

which determines how the player can refer to this object (see

below); and the location property which determines where the

object is in the world. In this case, the bench is located in the

startroom, which is itself an object, most likely an instance of

the room class.

Another important part of any interactive fiction system is the

parser, the subsystem that handles player input (text strings) and

recognizes intended actions based on this input. In TADS 2,

unlike other systems such as Inform 6, the parser is built into the

interpreter.

To allow the player to take an action in TADS 2, the author needs

to create a method on an object, one that will be called by TADS 2

when the player types the corresponding command into the parser.

The system uses the noun and adjective properties on the

object to determine which object the player is referring to. An

important point to note here is that methods to implement verbs

are written as methods on objects. As we will see below, this is in

contrast to Inform 6, which defines verbs separately from objects

and uses before/after properties on objects to create customized

rules for specific objects.

Figure 5. Linking the teapot to a little, grimy, linen

(but openable) bag is not quite successful.

Figure 6. Linking the teapot to a clove of garlic is

completely not possible.

The robots that inhabit the world of Bad Machine, with their

distinct sets of behaviours and autonomous action, seem to almost

be a consequence of the particular nature of TADS 2, which lends

itself to the creation of sub-classes of objects. Using an object-

oriented approach, it would be fairly straightforward to create

multiple instances of, for example, a “salvager-class machine”,

which would actually be an instance of a class that inherits the

basic robot behaviour from a “robot” or “machine” super-class.

Similarly, the interchangeable parts on the robots, with their

common interfaces and the inheritance of behaviours from super-

classes, very much reflects the programming paradigms dominant

in the development platform. Shiovitz was not, of course,

somehow forced to make a game of this sort by TADS 2. Just as

he used the texture of code and obviously computational outputs

to constitute the surface appearance of Bad Machine, he used the

underlying system of TADS to create a simulated world that is

evidently object-oriented, providing an environment, puzzles, and

figuration.

4.2 Inform 6
Inform 6 is a programming language with libraries developed by

Graham Nelson specifically to support the requirements of authors

of interactive fiction and released in 1996. Based on entries to the

Interactive Fiction competition and the contents of the IF Archive,

it has been the most widely-used interactive fiction development

system since 1996; TADS 2 comes in second. There are three key

concepts in Inform 6: the object tree and properties/attributes —

discussed next — and verbs, discussed later.

When writing a game in Inform 6, the developer creates a set of

objects, which are related hierarchically in terms of containment,

in a type of graph called a tree. Every object has a position in the

object tree, which indicates a parent-child relationship between

objects. An object that is the child of another object is said to be

“contained” in the parent object. This object hierarchy provides a

concept of physical space, with top-level objects tending to

represent rooms, and objects within top-level objects representing

physical objects in the world. The player character and any non-

player characters are also represented as objects within the object

tree. Since any object can contain other objects, it is

straightforward to create, for example, a container such as a box

that can hold other objects.

Another key concept in Inform 6 is the notion of attributes and

properties. Attributes are true/false values that are used to

determine if an object “has” a certain attribute, whereas properties

are variables that can have any value. These two concepts are used

extensively in Inform 6 to determine how, for example, a verb

should be applied to an object.

For example, a bench could be defined as follows:

Object bench “bench” startroom
 with description “The cold metal bench is, at
least, somewhere to rest.”,
 name ‘bench’,
 has static scenery enterable supporter;

The Object keyword specifies that we are defining a new object,

which will be referred to as bench and will be a child of the

startroom object in the object tree. The with directive tells

Inform 6 that the object has a property named description. The

description of the bench is containing in the text that follows. The

name property tells Inform 6 that the object is named bench.

Similarly, the has directive tells the system that the object has the

following attributes: static, scenery, enterable, and

supporter. Attributes can be defined globally, and then used by

objects as required.

Inform 6 is an object-oriented language, providing the ability for

programmers to define a class from which new objects can

inherit. As with TADS 2, Inform 6 provides for class declarations

and inheritance. In fact, the concept of objects is introduced in

Chapter 3 of the Inform Designer’s Manual [10], and on page 72

of the Inform Beginner’s Guide [2]. However, in general, authors

who work with Inform 6 tend to create a series of unique objects,

all based on the built-in Object meta-class. In contrast to TADS 2,

the most straightforward way to create interesting behaviours on

an object is to define an attribute and then give the object that

attribute using the has keyword. Classes in Inform 6 are distinct

from objects; in TADS 2 any object can be a class. This makes it

much easier for a TADS 2 author to decide to create a new object

as a subclass of an existing object. An Inform 6 author has to plan

a class hierarchy ahead of time, deciding which classes to create

and then instantiating objects based on those classes.

As can be seen from the two definitions of bench, in TADS 2 and

in Inform 6, there is a difference of emphasis in the structure of

the code. In TADS 2, the first thing that the programmer needs to

do is specify the super-class for a new object, in this case

chairitem. In Inform 6, this can be done — in fact, the Object

keyword is specifying the class which the new object belongs to.

If we had, for example, defined a Chair class, we could have

started our definition of bench with Chair bench “bench”
startroom. The fact that the new object is deriving its attributes

and properties from the Object class isn’t as clear. It can seem to a

programmer as if Object is simply a keyword that defines the

start of an object definition, as opposed to actually specifying the

class that this object is an instance of. The foregrounding of the

class concept in TADS 2 affords consideration of class structure

during the design of a work, whereas the emphasis on attributes

and properties in Inform 6 focuses the author’s attention more on

these features of the system.

In Inform 6, a series of libraries, sets of program code that extend

the basic functionality of the core system, provide the parser, a

basic set of verbs, and grammar. The library also implements a

world model, which provides concepts such as directions, food

and drink, clothing, containers, doors, etc., and a simple turn-

based model of time.

Finally, in Inform 6 verbs are defined as procedures that are

separate from objects. A verb’s default behaviour is specified

within the procedure itself. It is possible to provide logic that

determines different behaviours based on the subject and object of

the verb. However, a more commonly used, and more flexible,

approach is to make use of the before/after keywords in an

object to customize the ways in which a verb is applied to specific

objects. As a result, Inform 6 works often consist of a large

number of objects, a large number of verbs, and before/after rules

on objects that modify how the verbs apply to the object based on

the attributes/properties of the object and other objects.

Clearly, attributes and properties provide an obvious way to

approach understanding and implementing the sympathetic magic

in Savoir-Faire. A number of attributes, such as openable, grimy,

wooden, linen, and so on, could be defined, and objects compared

based on these attributes. Similarly, properties such as colour and

shape could be assigned values and used to determine if a link is

successful. Using before/after properties to define how to handle

actions on objects, checking whether they have been linked or not

and acting accordingly, would also be a natural way to handle the

results of linking. Although a similar system could be developed

in TADS 2, the focus on inheritance and class hierarchies does not

seem to lend itself to this type of sympathetic magic. A set of base

classes could define objects with certain sets of similar properties,

but it is straightforward to implement these as properties in code.

4.3 Source Code Analysis
After developing the previous platform-based readings of Savoir-

Faire and Bad Machine, we asked Shiovitz and Short for the

source code to the games and for permission to discuss this source

code in our writing at a high level. They provided us with the

most recent Inform and TADS files. We believe that the sort of

analysis we have done here applies in cases where the source code

is lost (as might be the case with some early programs) or

unavailable (as would be the case with current commercial

games). So, we do not want to overemphasize the importance of

source code for this general approach or to suggest that access to

these files is essential. However, our ability to examine the source

in this case has allowed us to see whether it bears out some of our

specific claims.

The Bad Machine code is organized into multiple files, reflecting

its highly object-oriented structure. Two files, named parts.t and

machines.t, contain definitions of the classes for the robot parts

and the specific robots.

The first file, parts.t, defines a complex class hierarchy used to

implement the robot parts. A base class, bodypart, implements

the common behaviour for robot parts. This base class has several

sub-classes: legPart, headPart and torsoPart. There is also a

body base class, which has sub-classes inactiveBody and

activeBody. There is a further sub-class for activeBody, Me,

which represents the player-character, Mover #005. This class

hierarchy fully defines the base behaviours shared by the robots

and their body parts. The second file, machines.t, contains a series

of classes that are sub-classed from the classes defined in parts.t.

These classes define the specific robot types. For example, there is

an energizer class, sub-classed from activeBody, which

defines the energizer robot that we described earlier. There is also

an energizerHead, energizerTorso, and a series of energizer

legs, which represent the various parts of the energizer. These are

all sub-classed from the appropriate super-classes in parts.t.

The other files, such as instances.t and a series of files containing

definitions of specific rooms within the game, make use of

machines.t to instantiate specific objects representing the various

robots and robot parts.

In total, Bad Machine contains 188 class definitions (excluding

the standard library files), and has a maximum class tree depth of

7. For example, boxClimber is sub-classed from climber,

activeBody, body, item, thing, and object. If we take out the

classes from the standard library (item, thing, and object), this

still gives a depth of 4 (boxClimber, climber, activeBody,

and body).

This brief analysis of the code of Bad Machine confirms that, as

discussed during our close reading and platform analysis, Bad

Machine has a very elaborate class structure, very much in line

with the game world and play experience.

The code for Savoir-Faire, in contrast, is largely contained in a

single file, stub.inf. This file contains the definitions for the

majority of the objects in the world, such as the rooms and their

contents. It also contains the definition of a class, Enchant,

which, together with the verbs LinkSub, HLinkSub, RLinkSub,

BadLinkSub and LinkableCheck, contains the implementation

of the magic system. Another file, Mobile.h, contains the

definitions of the various types of objects that are used with the

system of sympathetic magic. This file contains a list of attribute

definitions, such as flammable, fragile, hard, heavy, and so

on, and a list of values describing the material and shape of world

objects. It also contains a base class, Mobile, from which both the

Enchant class and a series of material-specific classes, such as

Stone, Metal, Cloth and Glass, are sub-classed. Interestingly,

these sub-classes consist largely of a list of attributes and

properties. For example, Metal has its material property set to

METALMAT, and has attributes hard and heavy. Specific objects,

defined in stub.inf, are defined as instances of these material-

specific classes.

Savoir-Faire contains a total of 33 class definitions (excluding the

standard Inform 6 libraries and any extensions which may have

been used). The maximum class tree depth is 5 (for example,

Chink is sub-classed from Mirror, Enchant, Mobile, and

Class). Taking out the standard base class, Class, this leaves a

depth of 4.

Comparing Bad Machine and Savoir-Faire at the source code

level, we see that, interestingly, the depth of the class tree (leaving

aside the standard library classes) is the same. However, the

number of class definitions in Bad Machine is much greater: 188

as compared to 33. Unlike the extensive use of classes for

inheritance of behaviours seen in Bad Machine, the

implementation of sympathetic magic in Savoir-Faire makes use

of a smaller number of classes, largely for the inheritance of

attributes and properties. The platform differences between TADS

2 and Inform 6 clearly do not prohibit the use of classes, but in

these two game, which present themselves to the player as

similarly complex systems, there does seem to be a difference in

the degree to which classes are used, with TADS 2 possibly

encouraging more extensive use of classes as compared to Inform

6.

4.4 Simulationism
Both Bad Machine and Savoir-Faire can be seen as examples of

what has been termed simulationism in the interactive fiction

community [8]. This term has been used frequently in, for

example, discussions on the Usenet group rec.arts.int-fiction. A

rough definition of simulationism is as follows:

Simulationism is the tendency towards deeper and less

abstract simulation of physical (and possibly emotional)

properties of the game world, not for limited domains

that the author has chosen, but as a general framework.

Additionally, the “physics” of the world are likely to

interact with each other leading to unforseen [sic]

consequences. [5]

In Savoir-Faire, the use of likeness allows the player to link

objects. This linking is not limited to specific, special cases

determined ahead of time by the author. Instead, there is a rich,

consistent simulation of a set of rules about the world, which the

player can explore freely. In Bad Machine, there is a similar

consistency and richness to the world, where robot parts can be

interchanged to create different behaviours, not just in pre-defined

ways which match the solution to puzzles, but in a general way, a

simulation of a specific world. Object-oriented programming is

designed to model the world in terms of categories of things and

sub-categories with similar properties, through a system of classes

and inheritance. In Bad Machine, it is not a naturalistic world that

is being modeled; instead, the author has taken an object-oriented

model and made a world out of this model. Nevertheless, the

result is, as with Savoir-Faire, a consistent, detailed simulation of

a fictional world. Both of these are directly based on a

classification model; both are simulationist in some way. What is

interesting is how they approach that position, and the very

different end results.

We are not claiming that choosing between Inform 6 and TADS 2

influences authors to be more or less simulationist. As can be seen

in our two example works, both systems enable authors to create

highly simulationist works. However, it is possible to go along

with the mechanisms and features provided by the platform —

with specific class structures in the case of TADS 2, or with

attributes in Inform 6 — to build games that embody a

simulationist perspective in specific ways. The platform provides

a certain way of approaching problems that is more natural; the

platform affords a particular approach.

5. WORDPLAY AND THE PARSER
Certain interactive fiction games implement interactive wordplay;

they require the player to participate in making puns, using

alliteration, or undertaking other linguistic tricks in order to solve

puzzles and move forward in the game. These games can also

create new languages that the player must figure out both to

understand the game’s text and to enter commands. Wordplay

may characterize the entire game, in cases such as Ad Verbum, or

may constitute one or more puzzles, as in The Leather Goddess of

Phobos. Wordplay in interactive fiction can be done for many

purposes: for humor value, for instance, or to connect to literary

questions and practices of contemporary writing.

All text-based interactive fiction, by definition, involves the

player typing in some text, which is read by a parser. The parser

is that part of the interactive fiction system which is dedicated to

breaking down the player’s text into machine-understandable

fragments, which can then be used to determine which verb the

player wants to activate, and on which object(s) within the game

world. The parser has a difficult task, as players may enter

ambiguous sentences, make use of unexpected sentence

constructions, or use any number of synonyms for verbs or

objects.

In TADS 2, the parser, as described in The TADS Parser Manual

[13], is partly built into the TADS interpreter, the program that

actually runs a TADS game. The other portion of the parser is

contained in TADS game code, which can further reside in two

places: some code will be in the standard library provided by

TADS, in the file `adv.t`, whereas additional code may have been

written by the game author, and reside in the game-specific code.

The code in the interpreter cannot be changed by a game author,

although TADS 2 does provide hooks, opportunities to override

what the parser does and to change the behaviour to match the

needs of the game. In addition, code that is provided in the

standard library can be changed or replaced. The parser at the

interpreter level does not include any verbs, objects or

prepositions — these are provided at the standard library level.

This means that, according to The TADS Parser Manual, “there’s

very little of the built-in parser that you can’t override”.

In Inform 6 there is even more flexibility, however. The parser, as

well as the grammar which it uses and the standard library

defining the default world of a game, are all implemented as

libraries which the author can choose to include (or not) in their

game. As such, it is possible to, for example, replace the grammar

used by the parser with that for another language, such as Spanish.

In addition, it is possible to modify, or entirely replace, the parser

itself. The Inform 6 parser also provides “hooks”, allowing the

author to selectively override specific behaviours. A major

difference between the approach taken by Inform 6 and TADS 2

is that the Inform 6 interpreter does not include any of the

implementation of the parser, or any other behaviour specific to

interactive fiction. In fact, there is no such thing as an “Inform 6”

interpreter — Inform 6 code is compiled to “z-code”, a standard

bytecode format which has its roots in the classic Infocom games

of the 1980s, which can then be interpreted by a z-code interpreter

such as Zoom or Frotz. All of the behaviours required to create

the experience of interactive with a text adventure are

implemented at the library level.

Based on these descriptions, the main difference between the

parser in TADS 2 and Inform 6 is that, in TADS 2, some portions

of the parser are contained in the interpreter or virtual machine,

whereas in Inform 6 the entire parser is situated in the standard

libraries. Both systems provide “hooks” for customization.

However, despite these seemingly similar systems, which both

allow for customization of the parser, it seems that there is a much

greater propensity for authors to use Inform 6 for wordplay

games, which often require extensive customization of the parser.

Table 1: Wordplay games by platform.

Platform Game title and author

IFDB search: “wordplay”

Inform 6
Ad Verbum (Montfort); Exterminate! (Martin); Goose,

Egg, Badger (Rapp); Letters from Home (Firth); The

Gostak (Muckenhoupt)

ZIL

Nord and Bert Couldn't Make Head or Tail of It

(O’Neill)

IFDB search: “linguistics”

Inform 6 For a Change (Schmidt); Suveh Nux (Fisher)

Inform 7 rendition (nespresso)

IFDB list: “Word-play games”

Alan 2 Puddles on the Path (Raisanen)

Inform 6 Beat the Devil (Camisa); Large Machine (Ingold); The

Edifice (Smith)

ZIL Leather Goddess of Phobos (Meretzky)

Baf’s Guide

Inform 6 Logic Puzzle Sampler (Plotkin); This is the game that I

wrote (Welbourn)

T/SAL

Quest for the Sangraal (Partington, originally written in

T/SAL, ported to Inform 6)

MSDOS T-Zero (Cunningham)

Spectrum Hide and Seek (Brown)

TADS 2 ASCII and the Argonauts: Astral Plane (Berman)

We compiled wordplay games from several resources (see Table

1). We searched The Interactive Fiction Database, an online

repository of interactive fiction information, for the keyword

“wordplay,” obtaining six games. We added to this three results

from searching for “linguistics.” To these, we added the games on

the IFDB recommendation list “Word-play games,” created by

Emily Short. And, finally, we searched Baf’s Guide to the IF

Archive, an index to the IF Archive, for wordplay games. Of the

20 games that resulted, 12 are implemented in Inform 6, only one

is in TADS 2, and one of the others is in Inform 7; none of the

remaining games are in any version of Inform or TADS.

It is quite possible that other interactive fiction games exist with a

substantial wordplay component. The IF Community resource

ifwiki lists the TADS 2 games Things (2004) by Sam Kabo

Ashwell and Jacqueline A. Lott, and Verb! (1998) by Neil

deMause and describes them as wordplay games, but because of

the nature of ifwiki, which is not categorized in the same way as

the other resources, it is not clear if there are more Inform 6

games (or TADS 2 games) of this sort that are also listed there but

which perhaps do not include the term “wordplay.” There seems

to be little reason to believe that the information at IFDB (which

is hosted at the TADS website) and Baf’s Guide would not be

fairly representative, or would understate the number of TADS

wordplay games relative to Inform games.

Based on 998 z-code and 335 TADS 2 games that Baf’s Guide

lists as available in the IF archive, the ratio of available Inform 6

to TADS 2 games is at most 3 to 1. (It is actually less, since the z-

code games include some games that were not created in Inform

6.) But for wordplay games in particular, the ratio of Inform 6 to

TADS 2 games seems to be 12 to 1. Although both TADS 2 and

Inform 6 provide the ability for the author to customize the parser,

Inform 6 seems to be the platform of choice for authors

embarking on wordplay games. That platform may invite authors

to add wordplay elements to games they are developing.

6. BOXES AND MENUS
There are some features for the presentation of information in

Inform 6 that are not available be default in TADS 2. One of

these, which may initially seem rather trivial, is the ability to

display a box, which shows information in a way that is visually

distinct from other information. For example, the first thing that a

reader of Curses by Graham Nelson sees is a quotation presented

in a box (see Figure 7).

Information presented in this way is distinct from the in-game

information shown as the player moves through the world of the

game [6].

As Genette discusses, “text is rarely presented in an unadorned

state, unreinforced and unaccompanied by a certain number of

verbal and other productions, such as an author’s name, a title, a

preface, illustrations” [3]. These paratexts or thresholds have

several significant functions; one is helping to situate a text within

a specific form. For example, the title, endorsement and table of

contents help to situate a book as a book for the reader. A book

with no title page seems wrong to anyone who handles books.

Similarly, interactive fiction works frequently contain certain

paratexts. The use of boxes to mark the start of sections of an

interactive fiction work, combined with epigrams or quotations,

can be seen early on, for instance, in Steven Meretsky’s 1985 A

Mind Forever Voyaging (see Figure 8). Inform certainly refers

back to the legacy of Infocom by using the z-code format. It also

does this by allowing these Infocom-style paratexts to be easily

generated.

Many Inform 6 games make use of this form of paratext to create

a specific texture. Boxes allow the author to present long passages

of texts, separate from the in-game text. The use of quotations, for

example, can create a very distinctive experience for the player, as

can be seen in the T.S. Eliot quotations in Curses, and the H.P.

Lovecraft quotations in Anchorhead (see Figure 9).

In addition to connecting these works to the body of IF works in

the tradition of Infocom, the use of quotations and other literary

paratext makes a strong connection between works such as Curses

and Anchorhead with books themselves. Although these

connections could arguably be made by a game written in TADS

2, the author would have to make a special. Boxes afford making

these connections for the player.

Figure 7: The use of a box to present a quotation in

Curses.

Figure 9: The use of boxes to present

chapter headings in Anchorhead.

Figure 8: The initial screen of Meretsky’s A Mind

Forever Voyaging.

Another feature that Inform 6 provides is the ability to create a

pop-up menu, outside of the main text of a game, from which the

player can make choices. These menus can be used to, for

example, create a “help” system which exists outside of the world

of the game, as can be seen in Admiral Jota’s Lost Pig (2007) (see

Figure 10).

The way in which this information is presented is in stark contrast

to the manner in which in-game information is conveyed.

Descriptions, actions, and even the player’s inventory are very

clearly presented in the voice of the main character, Grunk (see

Figure 11).

Compare this with the help given in Suzanne Britton’s Worlds

Apart, which was written in TADS 2. Here, the help text is clearly

not spoken by an in-game character. Nevertheless, it is

typographically indistinguishable from in-game text (see Figure

12).

However, as has been mentioned earlier, the fact that a platform

does or does not provide a certain feature does not prevent the

author from taking a given approach to a work, it merely makes it

easier. As a counter-example, Bad Machine contains a

hierarchical menu system (see Figure 13) even though TADS 2

does not provide this built-in facility. Interestingly, the menu is

partially in-game — although it provides access to the credits

screen, information on how to play the game, and so forth, some

of its entries are “corrupted”, presumably due to the damage to

Mover #05.

Menus can also be used to present information about the world of

the narrative. For example, in Anchorhead, written in Inform 6,

many documents and artifacts, such as the box of newspaper

clippings that the player discovers in the cellar (see Figure 14), are

revealed to the player through the use of hierarchical menus. This

information greatly enhances the richness of the world and the

story being conveyed.

This can be contrasted with the way that information in a work

such as Neil deMause’s Lost New York, written in TADS 2,

gradually presents information to the player through the

environment and in-game descriptions. For example, as the player

climbs the Statue of Liberty, towards the start of the game, a stone

tablet can be seen at the top of the pedestal of the statue, just

before the stairs leading to the observation deck. By typing read
tablet, the player can read the poem “The New Colossus”,

together with a piece of racist graffiti scrawled on the wall beside

the tablet, with both presented as in-game text.

Inform 6 provides a facility for creating separate menus as well as

boxes, so it is straightforward to use these menus for help systems

and to present information in a hierarchical manner. In TADS 2

there is no readily available facility to do this, although it is

certainly possible for an author to create an ad hoc menu system,

as in Bad Machine. The Inform 6 menu facility encourages

authors to present more information and to do so in an out-of-

game or at least off-the-command-line manner. In TADS 2, the

author is encouraged to present information in more of an in-game

fashion. Platform differences can be seen as affordances [11]. The

pertinent question is not what a platform makes is possible, but

what it makes easier.

Figure 13: In-game help in Bad Machine suffers the

same corruption as other parts of Mover #05’s system.

Figure 12: Help information presented typographically

the same as description and narration in Worlds Apart.

Figure 14: Documents and artifacts, presented as

menus, are used to reveal the backstory in Anchorhead.

Figure 11: In-game presentation of information in

Lost Pig.

Figure 10: The use of menus to present out-of-game

information in Lost Pig.

The Inform 6 platform encourages the author to approach the

creation of a world of interactive fiction from a certain

perspective, and to present information in certain ways. Boxes

create a kind of paratextual reference to a body of earlier work,

namely the early Infocom games such as A Mind Forever

Voyaging and Trinity, while at the same time encouraging the use

of intertextual references and connections to literature, as seen in

the use of T.S. Eliot quotes in Curses. Similarly, the menu system

available in Inform 6 encourages the author to present information

in an out-of-game fashion, in a manner not seen in TADS 2

works.

7. CONCLUSION
Different platforms accrete different types of games. Even subtle

differences, such as those that exist between TADS 2 and Inform

6, can influence the ways in which developers approach creating

new media works.

This type of analysis is of course not limited to text-based

interactive fiction. Platforms for the development of graphical

adventure games include Adventure Game Studio (AGS), used to

create about a thousand games over the past decade, and the more

recent Wintermute, which supports 3D characters and higher

resolutions. Both provide similar capabilities (as with Inform 6

and TADS) but differ in minor ways. StorySpace and HyperCard

may have greater differences, but both systems have been put to

similar uses by authors of hypertext poetry and fiction. Home

computers of different sorts also provided similar capabilities with

significant minor differences. In all of these cases, a comparative

analysis of platform and creative work could be enlightening.

For academics, it is important to take into account platform

differences when it comes to the analysis of games, electronic

literature, and digital art. Awareness of how platforms work, how

they differ, and why developers and artists choose one over the

others will help to inform the analysis of the aesthetic and cultural

dimensions of the works.

From the perspective of creators who are choosing a development

system, it is useful to consider the less-than-obvious ways in

which these systems might influence the shaping of stories and

worlds. Being aware of what a certain platform affords, will help

a developer to make a more informed choice as to which system

to use when considering a new work. This need for awareness

extends to the influence of the platform on the outcome of

development.

Finally, creators of new development tools and platforms should

be aware of how the choices made in the design of these platforms

will have an impact, directly or indirectly, on the works created on

these platforms.

The platform analysis presented in this paper has shown that it is

useful to examine implementation platforms in detail when

analyzing new media works, even when the platforms are very

similar. We hope this approach will prove to be of value to both

academics and developers.

8. ACKNOWLEDGMENTS
Thanks to Dan Shiovitz and Emily Short for kindly sharing the

source code for Bad Machine and Savoir-Faire. This research is

supported by the Singapore-MIT GAMBIT Game Lab research

grant “Tools for Telling: How Game Development Systems Shape

Interactive Storytelling”.

9. REFERENCES
[1] J. Douglass. Command Lines: Aesthetics and Technique in

Interactive Fiction and New Media. PhD thesis, University of

California Santa Barbara, 2007.

[2] R. Firth and S. Kesserich. The Inform Beginner’s Guide. Dan

Sanderson, third edition, 2004.

[3] G. Genette. Paratexts: Thresholds of Interpretation.

Cambridge University Press, 1997.

[4] D. G. Jerz. Somewhere nearby is colossal cave: Examining

Will Crowther’s original “Adventure” in code and in

Kentucky. Digital Humanities Quarterly, 1(2), 2007.

[5] James Mitchelhill. Simulationism and IF (long). Usenet

posting on rec-arts-int-fiction, 1 October 2005. [online]

http://groups.google.com/group/rec.arts.int-

fiction/msg/4ee60bfd7626bc42.

[6] N. Montfort. Twisty Little Passages: An Approach to

Interactive Fiction. MIT Press, 2003.

[7] N. Montfort. A bad machine made of words: Review of Bad

Machine, interactive fiction by Dan Shiovitz. trAce, 17

August 2004.

[8] N. Montfort. Playing to solve Savoir-Faire. In

T. Krzywinska and B. Atkins, editors,

Videogame/Player/Text, pages 175–190. Manchester

University Press, 2007.

[9] N. Montfort and I. Bogost. Racing the Bean: The Atari Video

Computer System. Platform Studies. MIT Press, March 2009.

[10] G. Nelson. Inform Designer’s Manual. The Interactive

Fiction Library, fourth edition, 2001.

[11] D. Norman. The Design of Everyday Things. Doubleday,

1990.

[12] M. J. Roberts. TADS 2 Author’s Manual. 2002.

[13] M. J. Roberts. The TADS Parser Manual. 2000.

