
A Box, Darkly:
Obfuscation, Weird Languages, and Code Aesthetics

Michael Mateas
Georgia Institute of Technology

College of Computing
School of Literature, Communication and Culture

michaelm@cc.gatech.edu

Nick Montfort
University of Pennsylvania

Department of Computer and Information Science
nickm@nickm.com

ABSTRACT
The standard idea of code aesthetics, when such an idea
manifests itself at all, allows for programmers to have elegance
and clarity as their standards. This paper explores programming
practices in which other values are at work, showing that the
aesthetics of code must be enlarged to accommodate them. The
two practices considered are obfuscated programming and the
creation of “weird languages” for coding. Connections between
these two practices, and between these and other mechanical and
literary aesthetic traditions, are discussed.

1. INTRODUCTION
Programmers write code in order to cause the computer to
function in desired ways. But modern computer programs are
written in a form, usually textual, that is also meant to be
manipulable and understandable by human beings. For a
programmer to understand what she herself is writing, and to
incorporate code that others have written, and to simply learn
how to program with greater facility and on a larger, more
complex scale, code has been made legible to people. While a
computer system may compile or interpret code, it is important
to the nature of code that it is interpreted by people as well.
A typical perspective on code would be that clarity and

elegance are the only possible values that programmers can have
when writing it, although they may succeed to a greater or lesser
extent at writing clear and elegant code. But if this were the
case, how is it possible to explain the way that people
sometimes intentionally obfuscate their code, making its
functioning more or less impenetrable, even when there is no
commercial or practical reason to do so?1 The existence of
obfuscated programming as a software development practice,
and as an aesthetic practice, throws a wrench into the simplified
theory of coding that would claim that coders must always strive
for clarity. An additional complication is seen in programming
languages that are themselves designed as jokes or parodies,
sometimes called “weird programming languages” or “esoteric
programming languages.” Such languages are designed to make
legibility of any program difficult. Obfuscated code and weird
languages highlight the importance of the human reading of
code in software development. If some code is only to be read
by a machine, it can be neither obfuscated nor clear: it can only
function properly or not.
This paper suggests some ways to enlarge an aesthetics of

code to account for the existence of obfuscated programming
and “weird languages.” Such consideration shows that a

1 Sometimes people might undertake to make their computer
programs difficult to understand for commercial reasons — to
thwart competitors and clients, for instance, and to increase
others’ dependence on them. This practice is entirely different
from the obfuscated programming discussed in this paper.

previously neglected layer of computing and new media is
available for rich aesthetic understanding.

2. READING CODE
Version 2.1 of the online lexical reference system WordNet
gives 11 senses for “read,” including “look at, interpret, and say
out loud something that is written or printed” and “interpret the
significance of, as of palms, tea leaves, intestines, the sky, etc.;
also of human behavior.” [14] This discussion is about a fairly
literal application of the most common sense, “interpret
something that is written or printed,” although of course code
that appears on a screen (rather than being written or printed
out) can also be read.
The understanding of behavior is certainly involved in reading

code in the primary sense of “read,” however. It is essential to
any ordinary human reading of a computer program to develop
an understanding of how the computer will behave, and what it
will compute, when it runs the code that is being examined. In a
popular book on the history of software, one of the developers
of FORTRAN is characterized as “an extraordinary programmer
who could ‘execute’ a program in his head, as a machine would,
and then write error-free code with remarkable frequency.” [7]
Actually, all programmers must do this to some extent, using
some internal model of what code will do. Just as understanding
what a program does, and why, is critical on a practical level for
the programmer, it is important to the aesthetics of code as well.
Because code functions, “the aesthetic value of code lies in its
execution, not simply its written form. To appreciate it fully we
need to 'see' the code to fully grasp what it is we are
experiencing and to build an understanding of the code's
actions.” [2]
The analysis of a computer program or system often involves

examining how the program behaves and “reading” (in this other
sense, “interpreting the significance of”) the intention behind the
program, the structure of the program, or the more fundamental
causes for the outputs observed. This is very frequently done in
reverse-engineering in “black-box” situations, where code and
other internals are not available for inspection. A network
administrator might also be able to “read” the behavior of a
malfunctioning router and figure out the problem without
looking at any code. But these types of analysis also apply to
systems that are not governed by legible code at all, and are not,
by themselves, examples of the phenomenon under
consideration, the human reading and interpretation of particular
texts, computer programs.
Reading in the main sense is about looking at something

abstract. “Reading a photograph” sounds odd, perhaps because
the photograph is not printed matter but also because it
represents a framed perspective rather directly, with little
abstraction. It is much more usual to read a diagram or map,
because these are abstract representations. The development of

software brought code into a legible condition. Cables patched
into the ENIAC were not themselves legible, but assembly
language for the stored-program EDSAC was. Human
readability of programs was further enhanced as high-level
programming languages, beginning with FORTRAN, were
developed.
In the question and answer period after a lecture, Donald

Knuth, the famous computer scientist who is author of The Art
of Computer Programming, recalls reading the program SOAP
from Stan Poley: “absolutely beautiful. Reading it was just like
hearing a symphony, because every instruction was sort of doing
two things and everything came together gracefully.” He also
remembers reading the code to a compiler written by Alan Perlis
and others: “plodding and excruciating to read, because it just
didn’t possess any wit whatsoever. It got the job done, but its
use of the computer was very disappointing.” Knuth says of the
aesthetics of reading programs and the reader's pleasure: “I do
think issues of style do come through and make certain
programs a genuine pleasure to read. Probably not, however, to
the extent that they would give me any transcendental
emotions.” [6]
This discussion is not about any sentimental effects that code

may have on the human reader, but does consider in detail the
issues of programming style and the ways in which human
readers read code. An aesthetic of code is suggested by Knuth's
comments, one that is typified by beauty and grace and is
clearly identified by Maurice Black in his dissertation, “The Art
of Code”:

Computing culture ... has adopted a traditional model
of literary aesthetics as a means of effecting change,
finding political utility and social value in the well-
crafted product that is at once entirely usable and
wholly beautiful to contemplate. The distinctions are
clearly evident in the respective disciplines' discourses:
whereas terms such as “elegant” and “beautiful”
circulate freely in computer culture to describe well-
crafted code, elegance, beauty, and all their synonyms
have been effectively exiled from the vocabulary of
literary and cultural theory ... [1]

Black devotes a section to Knuth's aesthetic views and his
concept of “literate programming,” and another section to John
Lions's book-length commentary on the beautiful, elegant Unix
operating system. “The Art of Code” clearly establishes the
classical aesthetic of programming as the dominant one in the
discourse of software development. More recent articles, such as
one entitled “Beautiful Code” that appeared in Dr. Dobbs, show
that this aesthetic is still going strong: “Instead of searching for
some automated measure ... perhaps we should be striving for
beauty in our work because we believe that beautiful things are
better.” [3] It is fairly easy to find programmers extolling the
beauty of programs and code snippets online, and also easy to
find suggestions for writing elegant, clearly-written code in
introductory programming textbooks.
There is a dark side to coding, however, one in which, even

though a person can see into what would otherwise be the black

box of the program, the source code itself is obscure, contrived
to foil human legibility rather than enhance it.

3. HELLO, OBFUSCATION
In 1984 Landon Curt Noll and Larry Bassel held the first
International Obfuscated C Code Contest. The contest was a
success that has been repeated many times; judging of the 18th
IOCCC was underway when this article was written. Only small,
complete C programs can be entered in the contest, which
rewards originality and the aesthetic abuse of the C language.
The contest's stated goals include demonstrating the importance
of programming style (“in an ironic way”) and illustrating
“some of the subtleties of the C language.” [4]
An anonymous entry in the first IOCCC (Figure 1)

accomplishes these goals in only two lines, and also plays on the
conventional “hello, world!” program, a program which is
typically used as a simple first example when learning a
programming language. Brian Kernighan and Dennis Ritchie
(the creator of C) begin their classic book The C Programming
Language [5] with such a program:

#include <stdio.h>

main()

{

printf("hello, world\n");

}

The obfuscated program prints “hello, world!” as it is
supposed to, but in a very tortuous way. To see how this
program comments on C programming style and the subtleties
of C, it is necessary to discuss the program in detail, and to
discuss the C programming language in detail. The explication
that follows will be most easily followed by those who know
how to program and will be best understood by those who have
had some experience programming in C. However, the
connection between the obfuscations seen in this code and the
particular nature of C should be evident to some extent even to
those who are not able, or do not wish, to follow all the details.
To begin, here is a clearer C program that prints “hello,

world!”:

main()
{
write(0,"hello, world!\n",14);

}

Even this simple program comes with a bit more baggage than
the BASIC equivalent, 10 PRINT "hello, world!", and
it is more complex than the program Kernighan and Ritchie use
to introduce C. The system call write is used in this code with
three arguments: 0 means the writing will be done to standard
output; the second argument is the string to write, which
includes a newline character encoded as \n at the end; and the
third argument, 14, is the length of the string, the number of

int i;main(){for(;i["]<i;++i){--i;}"];read('-'-'-',i+++"hell\
o, world!\n",'/'/'/'));}read(j,i,p){write(j/p+p,i---j,i/i);}

Figure 1. An anonymous entry to the 1984 International Obfuscated C Code Contest that prints “hello, world!”

characters in it. The following program adds one layer of
obfuscation, by using a function to print out the "hello,
world!\n" string one character at a time:

int i;

main()
{
for(i=0 ; i<14 ; i++)
{
write_one_letter("hello, world!\n" + i);
}

}

write_one_letter(letter)
{
write(0,letter,1);

}

This makes it harder to see how the program works, but it makes
visible some of the trickery that is possible, some would even
say encouraged, in C. Notice that part of this program involves
adding a string constant and a number, an operation which
cannot be done in many strongly typed programming languages.
In Java, where addition of String objects is defined as
concatenation, evaluating the expression ("string" + 17)
involves constructing a String out of the number, then adding
the two: the result is "string17". A string constant in C is
“really” a number, however, which means that adding a string
and a number has an entirely different meaning. The string, seen
as a number, is the address in memory where the first character
resides. Add one to this number, and the result is the location of
the second character. So this for loop, starting at position 0 and
finishing at 13, has the effect of sending each character in the
string to the write_one_letter function for printing.
To obfuscate the for loop a bit more, the i<14 condition is

written in a more elaborate way. Oddly enough, this condition
could be written "xxxxxxxxxxxxxx"[i], which has the
effect of returning character number i from a string that has 14
characters in it. This yields a positive number (meaning TRUE)
until i reaches 14, which corresponds to the end of the string;
when the end of the string is reached it returns FALSE. This
happens to be the case because strings in C are terminated with
NULL, which, in C, means the same thing as FALSE. Now, to
make things more puzzling, any array reference in C can either
be written a[b] or b[a]. The values of a and b are added
together and their sum is used to look up the array entry, so it
doesn't matter which one is inside the brackets and which one
comes before them. Thus, the condition can be written even
more confusingly as i["xxxxxxxxxxxxxx"]. Also, any
string that is 14 characters long can be used in this condition. To
create additional confusion about the program’s syntax, the
fully-obfuscated program uses a different string to create the
condition i["]<i;++i){--i;}"]. This makes it difficult to
see where the data of the string ends and the code of the
program begins.
The function write_one_letter is also given two

additional, superfluous parameters and its name is changed to
read. Redefining read to be a function that writes one letter is a
particularly gruesome move, but this is allowed in C; read is a
system call, not a keyword.

int i;

main()
{
for(i=0 ; i["]<i;++i){--i;}"] ; i++)
{
read(0,"hello, world!\n" + i,1);
}

}

read(j,letter,p)
{
write(0,letter,1);

}

The meaningful name letter can be changed to i to make it
seem as if this is the same i that was used previously — it is
not. And, within the read function, i is written as i--, which
suggests that the i up above might be getting decremented when
this happens — it is not; this decrementing has no effect because
this variable i “expires” immediately, at the end of the function.
The call to read can be crammed into the increment part of the
for statement, with the ++ operator is placed after i, to
increment its value after the statement has been executed; then
another + can be added to perform addition and make the
puzzling-looking +++. The initialization of i to 0 can be left
out. Integer variables in C are set to zero when they are defined,
so the i=0 in the program actually has no effect, except to make
the program easier to understand. With these changes, the code
looks like this:

int i;

main()
{
for(; i["]<i;++i){--i;}"] ;
read(0,i+++"hello, world!\n",1));

}

read(j,i,p)
{
write(0,i--,1);

}

There are only two differences between this code and the final
obfuscated program: the formatting of the text and the use of
some confusing ways to write zero and one. To turn to the
second of these, one fancy way to write zero is '-'-'-', that
is, the numerical value of the '-' character subtracted from
itself. Similarly, '/'/'/' divides the numerical value of the
'/' character by itself, giving one. (Doing arithmetic with
characters, like adding numbers and strings, is also not the most
standard programming practice, although programmers are of
course aware that characters have numerical representations.)
The fancy zero and fancy one values that are obtained by doing
this are passed to the read function as the variables j and p; that
function then uses other elaborate ways to write zero and one.
j/p+p is always 0/2 in this code and thus always zero. i/i is
always one. i---j is a way of writing (i--)-j, and, since j
has the value zero, this does a meaningless subtraction and is the
same as just writing i--. Adding in these elaborate ways of
expressing zero and one, the code looks like this:

int i;

main()
{
for(; i["]<i;++i){--i;}"] ;
read('-'-'-',i+++"hello, world!\n",'/'/'/'));

}

read(j,i,p)
{
write(j/p+p,i---j,i/i);

}

The final program is the above code with all unnecessary
whitespace removed and with the resulting line broken in two,
using a backslash in the middle of the "hello, world!\n"
string.
This example suffices to explain what obfuscations are and

how they relate to the programming language in which they are
written, although most IOCCC entries do far more elaborate
things. Gavin Barraclough's 2004 entry, which won best of
show, is exemplary. His program, less than 3600 characters in
length, is actually formatted in a “friendly” way, but is
cryptically scattered with one-letter variable names. The
approximately two and a half pages of code provide, as the hint
file explains,

a 32-bit multitasking operating system for x86
computers, with GUI and filesystem, support for
loading and executing user applications in elf binary
format, with ps2 mouse and keyboard drivers, and vesa
graphics. And a command shell. And an application - a
simple text-file viewer. [4]

4. THE COMEDIANAS THE LANGUAGE C
Some of the obfuscations that are seen in IOCCC, and some that
can be seen in the “hello, world!” program, can be more or less
universally applied by programmers, regardless of language.
The use of meaningless variable names such as j and p is
always possible. The deceptively-named variable i (which looks
like an earlier variable i) and the misleadingly-named read
function are other examples of a universal programming pitfall.
Whenever variable and function names can be freely chosen,
there is always the potential for the coder's choice to be
uninformative or misleading. This can be intensified in C, where
variable names are case sensitive; some programs take
advantage of this to name variables o and O, for instance,
inviting additional confusion with the number zero. This play,
which can be called naming obfuscation, shows one very wide
range of choices that programmers have. Such play refutes the
idea that the programmer's task is automatic, value-neutral, and
disconnected from the meanings of words in the world.
While these programs often critique or play with

programming in general, the winning IOCCC programs also
strongly assert their Cness. a[b] and b[a] do not mean the
same thing in other languages, so a programmer could not
choose the more confusing of the two. Other languages do not
define the addition of strings and numbers, or they define it in a
way that seems more intuitive, at least to beginning
programmers. But C, by giving the programmer the power to
use pointers into memory as numbers and to perform arithmetic
with them, particularly enables this sort of pointer confusion. By
showing how much room there is to program in perplexing ways

— and yet accomplishing astounding results at the same time —
obfuscated programs demonstrate that C is powerful, and also
that clarity in C code is achieved only with effort.
The “fake ending” to the for loop in the hello world program,

which is achieved by embedding a deceptive string "]
<i;++i){--i;}", is an example of data/code confusion.
This is actually a mild example meant to fool a reader for a
moment into thinking that this (meaningless) string is code;
other obfuscated programs may transgress the code/data
boundary in other ways, by consuming their source code as
input, by generating their own code as output, or by modifying
themselves as they run.
There is also an Obfuscated Perl contest, run annually by The

Perl Journal since 1996. While Perl is quite unlike C, even
beginning Perl programmers will be quick to realize the great
potential for obfuscation that lies within the language. For one
thing, Perl offers a dazzling variety of extremely useful special
variables, represented with pairs of punctuation marks; this
feature of the language nearly merits an obfuscation category of
its own. Perl’s powerful pattern-matching abilities also enable
cryptic and deft string manipulations. Perl is sometimes de-
acronymized as “Practical Extraction and Report Language,”
but has also been said to stand for “Pathologically Eclectic
Rubbish Lister.” The language is ideal for text processing, which
means that printing “hello, world!” and other short messages can
be done in even more interesting ways. Thus, the tradition of
writing an obfuscated Perl program that prints “Just another Perl
hacker,” arose on USENET and became common enough that a
program to do this is known simply as a JAPH. The popularity
of these programs is attested to by the first section of the Perl
FAQ, which answers the question “What is a JAPH?” [10]
More generally, Perl has as its mantra “there are many ways

to do it.” A half-dozen Perl programmers may easily know eight
or ten different ways to code exactly the same thing. Because of
this, obscure ways of doing fairly common tasks are lurking
everywhere. A common, high-level obfuscation technique that
is seen in obfuscated Perl and also in obfuscated C (however
differently it may be expressed there) involves choosing the
least likely way to do it. This could mean using a strange
operator, a strange special variable, or an unusual function (or
an ordinary function in an unusual way). It could also involve
treating data that is typically seen as being one type as some
other type, a view that is permissible according to the language
but not intuitive.
Perl and C are distinguished by having obfuscated

programming contests, but they are not widely despised
languages — unlike, for instance, COBOL or Visual Basic. Why
are these hateful programming languages not the targets of
obfuscatory ridicule? The most obvious explanation is that the
programmers who write obfuscated code are Perl and C hackers,
often professional ones. They enjoy hacking in these languages,
as do many free software developers and creative coders, and
would not choose to program in COBOL or Visual Basic for fun.
Their play with Perl and C is not pure pillory. In addition to
making fun of some “misfeatures” or abusable features of the
languages, obfuscated code shows how powerful, flexible
programming languages allow for creative coding, not only in
terms of the output but in terms of the legibility and appearance
of the source code.
What all obfuscations have in common — naming

obfuscations and language-specific ones, such as choosing the

least well-known language construct to accomplish something
— is that they explore the play in a language, the free space that
is available to programmers. If something can only be done one
way, it cannot be obfuscated. The play in a programming
language can also be used to make the program signify
something else, besides being valid code that compiles or is
interpreted to some running form.

5. MULTIPLE CODING
Recent IOCCC programs include a racing game in the style of
Pole Position, a CGI-enabled Web server, and a maze displayer
with code in the shape of a maze. It is common for obfuscated
programs to be of unusual visual appearance. The code may
spell out the name of the program, or the name of the contest, in
large letters, or be in the form of some other ASCII art picture.
This is a type of double coding, or, more generally, multiple
coding, which can also be seen in Perl poetry and in “bilingual”
programs.
The classic example of double coding in natural languages is

the sentence “Jean put dire comment on tape,” which is
grammatical English and grammatical French, although each
word has a different meaning in each language. (In French, the
sentence means "Jean [male name] is able to say how one
types.") Harry Mathews contributed to further French/English
double coding by assembling the Mathews Corpus, a list of
words which exist in both languages but have different
meanings. In programming, an important first step was the 1968
Algol by Noël Arnaud, a book of poems composed from
keywords in the Algol programming language. However, these
poems are not executable programs; they are English poems that
were assembled from a very restricted vocabulary. [8]
A notable modern ancestor of Arnaud's Algol is Perl poetry, in

which texts that can be read as poems are devised so as to also
be valid Perl programs. As critics of code aesthetics have noted,
even award-winning Perl poetry is often little more than an
exercise of “porting” existing song lyrics into Perl, and the
practice “does little to articulate the language of perl itself.” [2]
While it is possible to obfuscate a program, in the sense of the
IOCCC or the Obfuscated Perl Contest, by fashioning it in the
form of an English poem, the goals of competitive obfuscators
and Perl poets appear to be quite different. Although a Perl poem
must be a valid program, what the program actually does is
often an afterthought in Perl poetry. For instance, the winning
program in the first Perl Poetry Contest does nothing. In
contrast, a program’s function is essential to obfuscated
programming. So, while Perl poetry is an interesting
phenomenon to many new media scholars, there are reasons,
quite apart from any possible distaste for poetry, that this
practice seems less interesting to programmers. The interesting
phenomenon of multiple coding can be found in obfuscated
programs, too, while these programs also feature impressive,
intricate workings that are essential to their aesthetics.
Some other and quite extreme examples of multiple coding

are also seen in programs that are “bilinguial” or “multilingual”
and are analogous to “Jean put dire comment on tape” — they
are valid computer programs in more than one computer
language. These can be achieved by the re-use of keywords and
operators or by using comments in one program to include code
in another language.

6. HELLO, WEIRD
In the field of weird languages, also known as esoteric
languages,2 the programmer moves up a level to exploit not just
the play of a particular language, but the play that is possible in
programming language design itself. Weird programming
languages are not designed for any real-world application or
normal educational use; rather, they are intended to test the
boundaries of programming language design. A quality they
share with obfuscated code is that they often ironically comment
on features of existing, traditional languages.
There are literally dozens of weird languages, commenting on

many different aspects of language design, programming history
and programming culture. A representative selection is
considered here, with an eye towards understanding what these
languages have to tell us about programming aesthetics.
Languages are considered in terms of four dimensions of

analysis: 1) parody, spoof, or explicit commentary on language
features, 2) a tendency to reduce the number of operations and
strive toward computational minimalism, 3) the use of
structured play to explicitly encourage and support double-
coding, and 4) the goal of creating a puzzle, and of making
programming difficult. These dimensions are not mutually
exclusive categories, nor are they meant to be exhaustive. Any
one weird language may be interesting in several of these ways,
though one particular dimension will often be of special interest.

7. ABANDONALL SANITY, YEWHO
ENTER HERE: INTERCAL
INTERCAL is the canonical example of a language that parodies
other programming languages. It is also the first weird language,
and is highly respected in the weird language community. It was
designed in 1972 at Princeton University by two students, Don
Woods and James Lyon. (Later, while at Stanford, Woods was
the co-author of the first interactive fiction, Adventure.) The
explicit design goal of INTERCAL is

…to have a compiler language which has nothing at all
in common with any other major language. By ‘major’
we meant anything with which the author’s were at all
familiar, e.g., FORTRAN, BASIC, COBOL, ALGOL,
SNOBOL, SPITBOL, FOCAL, SOLVE, TEACH, APL,
LISP and PL/I.” [13]

INTERCAL borrows only variables, arrays, text input/output,
and assignment from other languages. All other statements,
operators and expressions are unique (and uniquely weird).
INTERCAL has no simple if construction for doing conditional
branching, no loop constructions, and no basic math operators
— not even addition. Effects such as these must be achieved

2 “Esoteric” is a more common term for these languages, but it
is a term that could apply to programming languages overall
(most people do not know how to program in any language) or
to languages such as ML and Prolog, which are common in
academia but infrequently used in industry. A better
designation might be art languages. However, while such
languages are undoubtedly a category of software art,
developers of these languages do not use this term themselves,
and it seems unfair to apply the term “art,” with all of its
connotations, to their work. While people might consider all
sorts of languages to be “weird,” that term’s sense better
captures the intention behind these languages, and it is used at
times by the language designers themselves.

through composition of non-standard and counterintuitive
constructs. In this sense INTERCAL also has puzzle aspects.
However, despite the claim that this language has “nothing at

all in common with any other major language”, INTERCAL
clearly spoofs the features of contemporaneous languages,
combining multiple language styles together to create an
ungainly, unaesthetic style. From COBOL, INTERCAL borrows
a verbose, English-like style, including optional syntax that
increases the verbosity; all statements can be prepended with
PLEASE. Sample INTERCAL statements in this COBOL style
include FORGET, REMEMBER, ABSTAIN and REINSTATE.
From FORTRAN, INTERCAL borrows the use of optional line
numbers, which can appear in any order, to mark lines, and the
DO construct, which in FORTRAN is used to initiate loops. In
INTERCAL, however, every statement must begin with DO.
Like APL, INTERCAL makes heavy use of single characters
with special meaning, requiring even simple programs to be
liberally sprinkled with non alphanumeric characters. In a sense,
INTERCAL exaggerates the worst features of many languages
and combines them together into a single language.
The compiler, appropriately called “ick,” continues the

parody. Anything the compiler can’t understand, which in a
normal language would result in a compilation error, is just
skipped. This “forgiving” feature makes finding bugs very
difficult; it also introduces a unique system for adding program
comments. The programmer merely inserts non-compileable text
anywhere in the program, being careful not to accidentally
embed a bit of valid code in the middle of their comment.
The language manual hammers home the parody. After

explaining that INTERCAL stands for “Compiler Language with
No Pronounceable Acronym,” the manual proceeds with a series
of in jokes on language design. At one point the reader is
presented with a logic diagram that claims to provide a simpler
way of understanding the SELECT operation (SELECT being
one of INTERCAL’s two non-intuitive math operators): “The
gates used are Warmenhovian logic gates, which means the
outputs have four possible values: low, high, undefined …, and
oscillating …” The reader is presented with a maze-like logic
diagram in which lines needlessly zig-zag, sometimes dead-end,
and all eventually connect at the system bus, the BUS LINE; of
the many lines heading off diagram from the BUS LINE, all go
“TO NEW YORK” except for the one “TO PHILIDELPHIA.”
All non-alphanumeric characters are given special names: tail
(,), hybrid (;), mesh (#), worm (-) and so forth.
Thirty-three years later, INTERCAL still has a devoted

following. Eric Raymond, the current maintainer of INTERCAL,
revived the language in 1990 with his implementation C-
INTERCAL, which added the COME FROM construct to the
language — the inverse of the much-reviled GO TO.

8. MINIMALISM: BRAINFUCK
Languages that parody comment on other programming
languages; languages in the minimalist vein, on the other hand,
comment on the space of computation. Specifically, they call
attention to the very small amount of structure needed to create
a universal computational system. (A “system” in this sense can
be as varied as a programming language, a formal mathematical
system, or a physical processes, such as a machine.) A universal
system can perform any computation that it is theoretically
possible to perform; such a system can do anything that any
other formal system is capable of doing, including emulating

any other system. This property is what allows one to implement
one language, such as Perl, in another language , such as C, or to
implement an interpreter or compiler for a language directly in
hardware (using logic gates), or to write a program that runs on
some specific hardware to provide a platform for yet other
programs (as the Java Virtual Machine does). Universality in a
programming language is obviously a desired trait, since it
means that the language places no limits on the processes that
can be specified in the language. There are less powerful ways
to compute, some of which are used often — for instance,
regular expressions, of the sort found in the Find and Replace
dialog of word processors, are powerful enough to tell whether a
string has an even number of characters in it, but cannot
determine whether the length of a string is a prime number, as a
universal computer can.
Universal computation was discovered by Alan Turing and

described in his 1937 investigation of the limits of
computability, “On Computable Numbers.” While his paper
proved the counter-intuitive result that there exist formally
specified problems for which there exists no computational
process (that is, no program) for finding a solution, the
important result for this paper was his definition of a notional
machine, the Turing Machine, to specify what he meant by
computation.
A Turing Machine consists of 1) an infinite tape, divided into

cells (memory locations), along which a read/write head moves
reading and writing symbols to and from the tape, and 2) a
single state register that can store a symbol indicating the
machine’s current state. A Turing Machine is governed by a rule
table which specifies, for each possible combination of state
symbol and symbol read from the tape, what symbol the head
will write to the tape, whether the head will move left or right,
and what new symbol is stored in the state register. While it is
easy to imagine that one could define a TM to compute a
specific function, Turing proved that there exist TMs that can
simulate the activity of any arbitrary TM; these are universal
Turing Machines. The structure necessary to achieve
universality is surprisingly small; for example, a universal TM
can be defined using only 2 state symbols and 18 tape symbols
(2x18).
Minimalist languages strive to achieve universality while

providing the smallest number of language constructs possible.
Such languages also often strive for syntactic minimalism,
making the textual representation of programs minimal as well.
Minimal languages are sometimes called Turing Tarpits, after
epigram 54 in Alan Perlis’ Epigrams of Programming: “54.
Beware the Turing tar-pit in which everything is possible but
nothing of interest is easy.” [11].
Brainfuck is an archetypically minimalist language, providing

merely seven commands, each represented by a single character.
These commands operate on an array of 30,000 byte cells
initialized to 0. The commands are:
> Increment the pointer (point to the memory cell to the right)
< Decrement the pointer (point to the memory cell to the left)
+ Increment the byte pointed to
- Decrement the byte pointed to
. Output the byte pointed to
,Accept a byte of input and write it into the byte pointed to
[Jump forward to the corresponding] if pointing to 0

] Jump back to the command after the corresponding [if
pointing to a non-zero value.
A Brainfuck “hello, world” program follows:

++++++++++[>+++++++>++++++++++>+++>+<<<<>++.>+.++
+++++..+++.>++.<<+++++++++++++++.>.+++.------.---
-----.>+.>.

Minimalist languages also comment on computer architectures
as well the nature of computation, and can have the flavor of a
minimal assembly language. The language OISC explicitly
parodies assembly language, for example. OISC stands for the
“One Instruction Set Computer”, referencing the standard
acronyms RISC (Reduced Instruction Set Computer) and CISC
(Complex Instruction Set Computer). OISC consists of a single
instruction, subtract-and-branch-unless-positive. subleq(a,
b, c) subtracts the contents of memory location a from the
contents of memory location b, stores the result in b, and, if the
result of the subtraction was 0 or negative, jumps to the address
stored in memory location c. Assembly languages commonly
contain separate arithmetic operations (add and subtract), as
well as various branch operations that test a memory location
and branch if the memory location is, for example, positive, or
negative, or zero. OISC parodies assembly by combining an
arithmetic and branch operation into a single instruction and
providing that to the programmer as the only instruction.

9. STRUCTURED PLAY: SHAKESPEARE
Some weird languages encourage double coding by structuring
the play within the language such that valid programs can also
be read as a literary artifact. As was previously described,
double-coding is certainly possible in languages such as C and
Perl, and in fact is an important skill in the practice of
obfuscated programming. But where C and Perl leave the space
of play relatively unstructured, forcing the programmer to
shoulder the burden of establishing a double coding, structured
play languages, through their choice of keywords and their
treatment of programmer defined names (e.g. variable names),
support double coding within a specific genre of human-
readable textual production. The language Shakespeare
exemplifies this structured play aspect.
Here is a fragment of a Shakespeare program that reads input

and prints it out in reverse order:

[Enter Othello and Lady Macbeth]

Othello:
You are nothing!

Scene II: Pushing to the very end.

Lady Macbeth:
Open your mind! Remember yourself.

Othello:
You are as hard as the sum of yourself and a stone
wall. Am I as horrid as a flirt-gill?

Lady Macbeth:
If not, let us return to scene II. Recall your
imminent death!

Othello:

You are as small as the difference between
yourself and a hair!

Shakespeare structures the play of the language so as to
double-code all programs as stage plays, specifically, as spoofs
on Shakespearean plays. This is done primarily by structuring
the play (that is, the free space) that standard languages provide
in the naming of variables and constants. In standard languages,
variable names are a free choice left to the programmer, while
numeric constants (e.g. 1) are either specified by the textual
representation of the number, or through a name the programmer
has given to select constants. In contrast, Shakespeare Dramatis
Personae (variables) must be the name of a character from some
Shakespeare play, while constants are represented by nouns. The
two fundamental constants in Shakespeare are -1 and 1. The
dictionary of nouns recognized by the Shakespeare compiler
have been divided into positive, negative, and neutral nouns. All
positive (e.g. “lord”, “angel”, “joy”) and neutral (e.g. “brother”,
“cow”, “hair”) nouns have the value 1. All negative nouns (e.g.
“bastard”, “beggar”, “codpiece”) have the value -1.3 Constants
other than -1 and 1 are created by prefixing them with
adjectives; each adjective multiplies the value by 2. So sorry
little codpiece denotes the number -4.
The overall structure of Shakespeare follows that of a

stageplay. Variables are declared in the Dramatis Personae
section. Named acts and scenes become labeled locations for
jumps; let us return to scene II is an example of a
jump to a labeled location. Enter and exit (and exeunt) are used
to declare which characters (variables) are active in a given
scene; only two characters may be on stage at a time. Statements
are accomplished through dialog. By talking to each other,
characters set the values of their dialog partner and themselves,
compare values, execute jumps, and so forth. Conditional jumps
are accomplished by one character posing a true or false
question, and the second character describing what action to
take based on the truth value. Such a jump appears in the
previous code sample, where Othello asks Lady Macbeth Am I
as horrid as a flirt-gill? (is the value of the
variable Othello equal to -1), and Lady Macbeth responds If
not, let us return to scene II.
In a programming language, keywords are words that have

special meaning for the language, indicating commands or
constructs, and thus can’t be used as names by the programmer.
An example from C is the keyword for used to perform
iteration; for can not be used by the programmer as the name
of a variable or function. In standard languages, keywords
typically limit or bound play, as the keywords are generally not
selected by language designers to facilitate double-coding. This
is, in fact, what makes code poetry challenging; the code poet
must hijack the language keywords in the service of a double-
coding. In contrast, weird languages that structure play provide
keywords to facilitate the double-coding that is generally
encouraged by the language. Shakespeare keywords maintain a
stylistic consistency with a melodramatic spoof of
Shakespearean plays. Output is accomplished via Open your
heart (output value as number) and Speak your mind
(output value as character), input by Listen to your
heart (input value as number) and Open your mind (input
value as character). A number of comparative synonyms are

3Interestingly, “Microsoft” is in the negative noun list.

provided for accomplishing inequality tests. For example,
friendlier and jollier perform the greater-than test, as
in are you friendlier than a fatherless
bastard?, while punier and worse perform the less-than
test, as in are you punier than a gentle king?
Another language, Chef, illustrates different design decisions

for structuring play. Chef facilities double-coding programs as
recipes. Variables are declared in an ingredients list, with
amounts indicating the initial value (e.g., 114 g of red
salmon). The type of measurement determines whether an
ingredient is wet or dry; wet ingredients are output as characters,
dry ingredients are output as numbers. Two types of memory are
provided, mixing bowls and baking dishes. Mixing bowls hold
ingredients which are still being manipulated, while baking
dishes hold collections of ingredients to output. What makes
Chef particularly interesting is that all operations have a
sensible interpretation as a step in a food recipe. Where
Shakespeare programs parody Shakespearean plays, and often
contain dialog that doesn’t work as dialog in a play (“you are as
hard as the sum of yourself and a stone wall”), it is possible to
write programs in Chef that might reasonably be carried out as a
recipe. Chef recipes do have the unfortunate tendency to
produce huge quantities of food, however, particularly because
the sous-chef may be asked to produce sub-recipes, such as
sauces, in a loop.
A number of languages structuring play have been based on

other weird languages. Brainfuck is particularly popular in this
regard, spawning languages such as FuckFuck (operators are
replaced with curse words) and Cow (instructions are all the
word “moo” with various capitalizations).

10. THE SUN THE SUN, HIS MIND
PUZZLE: MALBOLGE
Languages that have a puzzle aspect explicitly seek to make
programming difficult by providing unusual, counter-intuitive
control constructs and operators. While INTERCAL certainly
has puzzle aspects, its dominant feature is its parody of 1960s
language design. Malbolge, named after the eighth circle of hell
in Dante’s Inferno, is a much more striking example of the
puzzle language. Where INTERCAL sought to merely have no
features in common with any other language, Malbolge had a
different motivation, as author Ben Olmstead writes:

It was noticed that, in the field of esoteric
programming languages, there was a particular and
surprising void: no programming language known to
the author was specifically designed to be difficult to
program in.
Certainly, there were languages which were difficult to
write in, and far more were difficult to read (see:
Befunge, False, TWDL, RUBE...). But even
INTERCAL and BrainF***, the two kings of mental
torment, were designed with other goals …
Hence the author created Malbolge. ... It was designed
to be difficult to use, and so it is. It is designed to be
incomprehensible, and so it is.
So far, no Malbolge programs have been written. Thus,
we cannot give an example. [9]

Malbolge was designed in 1998. It was not until 2000 that
Andrew Cooke, using AI search techniques, succeeded in

generating the first Malbolge program, the “hello, world!”
program — actually, it prints HEllO WORld — that follows:

(=<`$9]7<5YXz7wT.3,+O/o'K%$H"'~D|#z@b=`{^Lx8%$Xmr
kpohm-kNi;gsedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA
@?>=<;:9876543s+O<oLm

The writing of complex Malboge programs was enabled by Lou
Scheffer’s cryptanalysis of Malbolge and discovered
“weaknesses” that the programmer can systematically exploit:

The correct way to think about Malboge, I'm
convinced, is as a cryptographer and not a programmer.
Think of it as a complex code and/or algorithm that
transforms input to output. Then study it to see if you
can take advantage of its weaknesses to forge a
message that produced the output you want. [12]

His analysis proved that the language allowed for universal
computation. The “practical” result was the production of a
Brainfuck to Malbolge compiler.
What makes Malbolge so difficult? Like many minimalist

languages, Malbolge is a machine language written for a
fictitious and feature-poor machine, and thus gains some
difficulty of writing and significant difficulty of reading from
the small amount of play provided to the programmer for
expressing human, textual meanings. However, as Olmstead
points out, the mere difficulty of machine language is not
enough to produce a truly devilish language. The machine model
upon which Malbolge runs has the following features which
contribute to the difficulty of the language:
Trinary machine model. Programmers are used to all

number representations bottoming out in binary representation
at the machine-level. By making trits rather than bits the
fundamental representation, this de-familiarizes the machine.
This trinary orientation is borrowed from tri-INTERCAL, a
trinary variant of INTERCAL.
Minimalism. Malbolge provides a minimal computational

model. There are three registers, two of which are a data pointer
and a code pointer, and seven instructions, represented by the
ASCII characters (j i * p < / v). j and i manipulate the
data and code pointer, * and p perform two trinary operations,
< and / read and write characters from the A (accumulator)
register, and v stops the machine.
Counterintuitive operations. Like INTERCAL, Malbolge

does not provide standard constructs, such as conditional
branching or arithmetic. Instead those operations must be built
from two operations. * rotates the trinary cell pointed to by the
D pointer 1 trit to the right. (Actually, bit-wise rotation is a
standard operation on most computers — by providing this
construct, Malbolge is being uncharacteristically forgiving.) p
performs a tritwise operation on the contents of the A register
and the number pointed to by D register. The p operation, often
referred to as the crazy op, purposefully corresponds to no
natural operation. In presenting the table that describes how trits
are combined by the crazy op, Olmstead writes “don’t look for a
pattern, it’s not there.”
Indirect instruction decoding. In standard machine models

of computation, the code that will be executed next is
determined by a program counter. Usually, after executing one
instruction, the program counter is simply incremented so that it
points to the next one. The only other thing that can happen is a
“branch,” which corresponds, for instance, to if and GOTO

statements. In this case, the execution of the current instruction
causes the program counter’s value to change, so that it points to
some other location in memory. In either situation, the code that
runs next is sitting somewhere in memory; it is directly fetched
and run. In standard machine models, the instructions as laid out
in memory are exactly the instructions the machine will execute.
Malbolge, in contrast, performs a complicated transformation

on the instruction pointed at by the code pointer before
executing it. As the manual states:

When the interpreter tries to execute a program, it first
checks to see if the current instruction is a graphical
ASCII character (33 through 126). If it is, it subtracts
33 from it, adds C [the code pointer] to it, mods it by
94, then uses the result as an index into the following
table of 94 characters:
+b(29e*j1VMEKLyC})8&m#~W>qxdRp0wkrUo[D7,XTcA"lI
.v%{gJh4G\-=O@5`_3i<?Z';FNQuY]szf$!BS/|t:Pn6^Ha

If the character indexed in the table is one of the seven
characters corresponding to Malbolge operations, the operation
is executed. Otherwise the machine does nothing, except to
increment both the code pointer and the data pointer (the
constant incrementing of the data pointer provides another
annoyance for the programmer). Note that the transformation
depends on where the instruction resides in memory because C
(the code pointer) is added as part of this step; the same value
would execute as two different instructions at two different
locations in memory. AMalbolge programmer cannot lay out the
instructions she wants executed, but must lay out instructions so
that after they have been taken through this complicated
transformation, the eventual result will be the instructions that
were supposed to be executed in the first place. To make matters
more difficult, Malbolge programs can only consist of the seven
characters that correspond to operations; the programmer can’t
simply write a program consisting of non-operation characters
that will transform to operations.
Mandatory self-modifying code. In standard programming

practice, code is treated as immutable. Though both code and
data reside as patterns in memory, the block of memory patterns
corresponding to code remains fixed, while the block of memory
patterns corresponding to data is manipulated by the executing
code. Self-modifying code treats its code block as mutable,
literally changing its own operations as it runs. Self-modifying
code is notoriously difficult to read and write; where the textual
representation of the program is by necessity static, the structure
of the process dynamically changes over time. In Malbolge, the
programmer is forced to write self-modifying code, as code
modification is built into the definition of code execution:

After the instruction is executed, 33 is subtracted from
the instruction at C, and the result is used as an index
in the table below. The new character is then placed at
C, and then C is incremented.
5z]&gqtyfr$(we4{WP)H-Zn,[%\3dL+Q;>U!pJS72FhOA1C
B6v^=I_0/8|jsb9m<.TVac`uY*MK'X~xDl}REokN:#?G"i@

So, in addition to the complexities added by the indirect
instruction decoding, the instructions are constantly changed by
an arbitrary transformation. It is therefore impossible to write
code in Malboge that does the same thing twice in a row. These
factors account for the two years that passed before the first
Malbolge “hello, world” program appeared.
Scheffer, in his cryptanalytic treatment of Malbolge,

discovered a number of “weaknesses” that made it possible to

write arbitrary programs in Malbolge — proving, therefore, that
is is capable of universal computation. The most notable
weaknesses are as follows: The permutation table used to
modify code exhibits short cycles — that is, if one chooses
carefully, instructions can be selected that turn back into
themselves before very long. Specifically, a permutation cycle is
a sequence of code transformations that comes back to itself.
For example, the p instruction (the crazy op), when located at
memory location 20, will turn into the j instruction (to store a
value in memory) the first time it is executed, then into a “no
op” (do nothing) once the j instruction is executed, then into
another no op when the no op is executed, and finally, after this
no op is executed, back to the p instruction. Another forgiving
aspect of Malboge is that the branch instruction, i, is not
modified, nor is its target. Exploiting these regularities allowed
Scheffer to develop general Malbolge code constructs that, for
example, allow one to create a block of code that performs a
given function every other time it is executed, one that safely
does nothing the alternate times. These discoveries paved the
way for the creation of a BrainFuck to Malbolge compiler.

11. TOWARDABROADER CODE
AESTEHTICS
Programs in weird languages generally have the property of
being difficult to read. This suggests that weird languages may
be “auto-obfuscating,” requiring obfuscation from programmers.
But obfuscated code contests are not about merely producing
code that is hard to read; they are about exploiting the syntax
and semantics of the language to comment on the language
itself. Weird languages emphasizing minimalism and puzzles are
“merely” hard to read in the same way that assembly language is
hard to read; they provide so little play that it is virtually
impossible to double-code interestingly. Languages structuring
play, in contrast, are hard to read because of the insistence of the
enforced double-coding. The textual meaning of the program is
inevitably not about the procedural meaning of the program, but
about some unrelated domain. Of the weird languages described
here, it may be only INTERCAL that is truly auto-obfuscating.
Since INTERCAL parodies several languages, resulting in a
language in which nothing can be expressed cleanly or elegantly,
the difficulty of reading INTERCAL programs is a result of such
programs being about the parody languages, and thus in some
sense about INTERCAL itself.
By commenting on the nature of programming itself, weird

languages point the way towards a refined understanding of the
nature of everyday coding practice. In their parody aspect, weird
languages comment on how different language constructions
influence programming style, as well as on the history of
programming language design. In their minimalist aspect, weird
languages comment on the nature of computation and the vast
variety of structures capable of universal computation. In their
puzzle aspect, weird languages comment on the inherent
cognitive difficulty of constructing effective programs. And in
their structured play aspect, weird languages comment on the
nature of double-coding, how it is the programs can
simultaneously mean something for the machine and for human
readers.
All of these aspects are seen in everyday programming

practice. Programmers are extremely conscious of language
style, of coding idioms that not only “get the job done”, but do it

in a way that is particularly appropriate for that language.
Programmers actively structure the space of computation for
solving specific problems, ranging from implementing sub-
universal abstractions such as finite-state machines for solving
problems such as string searching, up to writing interpreters and
compilers for custom languages tailored to specific problem
domains, such as Perl for string manipulation. All coding
inevitably involves double-coding. “Good” code simultaneously
specifies a mechanical process and talks about this mechanical
process to a human reader. Finally, the puzzle-like nature of
coding manifests not only because of the problem solving
necessary to specify processes, but because code must
additionally, and simultaneously, double-code, make appropriate
use of language styles and idioms, and structure the space of
computation. Weird languages thus tease apart phenomena
present in all coding activity, phenomena that must be accounted
for by any theory of code.
Programming has already been connected to literature in an

interesting way, albeit without deep consideration of obfuscation
and weird languages as programming practices.[1] Obfuscation
and weird languages invite us to join programming contexts to
the literary contexts that must obviously be considered when
evaluating literary code. They also suggest that coding can resist
clarity and elegance to strive instead for complexity, can make
the familiar unfamiliar, and can wrestle with the language in
which it is written, just as much contemporary literature does.
When a program is double-coded to have some literary meaning,
or indeed, any human meaning, this meaning can play with what
programming language researchers call the semantics of the
code: what the code actually does as it executes.4 A very simple
case of such play can even be seen in the obfuscated C “hello,
world!” program, in which read is used to name a function that
writes one letter. In such play, the levels of human meaning and
machine meaning must both be considered.
As the name “Turing Machine” suggests, the computer is a

machine. Whether it is realized as a physical device or imagined
and abstract, it is made up of parts and performs tasks. A
tradition of overcomplicated machinery has manifested itself in
art in several ways, but perhaps most strikingly in Alfred Jarry’s
’Pataphysics, “the science of imaginary solutions,” which
involves the design of complicated physical machinery and also
the obfuscation of information and standards. As a joke, and as a
parody of the complex French calendar, Jarry introduced a new
calendar. It begins on his birthday and is divided into thirteen
months, each of 29 days. Each day has an obscure name in the
pataphysical calendar, and the last day of the month is, in all but
two cases, an imaginary day. The second month, for instance, is
“Haha,” and its second day is “Dissolution of Edgar Allan Poe,
dinomythurge.” The Collège de 'pataphysique revises the
calendar once in a while, changing the names of days.
An aesthetic of mechanical obfuscation is also seen in the

kinetic installations of Peter Fischli and David Weiss and in
their film “The Way Things Go” (1987-1988), as well as in the
earlier visual art of Robert Storm Petersen, Heath Robinson, and
Rube Goldberg. (The weird language RUBE was so named as a
tribute to Goldberg.) These depictions and realizations of
mechanical ecstasy comment on engineering practice and
physical possibility, much as obfuscated coding and weird

4 This is the view in operational semantics, at any rate; there are
also other ways to consider program semantics.

languages comment on programming and computation. These
“art machines,” like obfuscated programs, are interesting
because they do something in a very complex way, but to be
worth anyone’s attention they must actually do something and
have a machine meaning as well as a human one.
Perhaps most oddly, obfuscated programs and weird

languages are inviting. They ask for the full engagement of
those who read them or program in them, and offer to show how
strangely things can be done. They invite theorists and critics of
new media to look into the dark box of the machine and see how
creativity is at work in there, too. To understand how
programmer-artists, programmer-authors, game developers, and
hackers of other stripes achieve what they do, it will be
necessary to understand the full range of programming
practices, to not just play with the finished, executable file, but
to also consider the play that happens in programming it.

12. REFERENCES
[1] Black, M. J. The Art of Code. Ph.D. Dissertation,

University of Pennsylvania. 2002.

[2] Cox, G., A. McLean, and A. Ward. The Aesthetics of
Generative Code.
http://www.generative.net/papers/aesthetics/ 2000.

[3] Heusser, M. Beautiful Code. Dr. Dobb’s.
www.ddj.com/documents/ddj1122411683430/ 2005.

[4] International Obfuscated C Code Contest.
http://www.ioccc.org/

[5] Kernighan, B. W. and D. M. Ritchie. The C Programming
Language. 2nd Ed. Prentice Hall, Englewood Cliffs, New
Jersey. 1988.

[6] Knuth, D. E. Things a Computer Scientist Rarely Talks
About. Center for the Study of Language and Information,
Stanford, California. 2001.

[7] Lohr, Steve. Go To. Basic Books, New York. 2001.

[8] Mathews, H. and A. Brotchie, eds. Oulipo Compendium.
Atlas Press, London. 1998.

[9] Olmstead, B. Malboge.
http://www.antwon.com/other/malbolge/malbolge.txt 1998.

[10] Perl 5.6 FAQ. 23 May 1999.
http://www.perldoc.com/perl5.6/pod/perlfaq1.html

[11] Perlis, A. Epigrams on Programming. SIGPLAN Notices,
17(9), September 1982.
http://www.bio.cam.ac.uk/~mw263/Perlis_Epigrams.html

[12] Scheffer, L. http://www.lscheffer.com/malbolge.html

[13] Woods, D. and J. Lyon, The INTERCAL Programming
Language Revised Reference Manual. 1st Ed. 1973, C-
INTERCAL revisions, L. Howell and E. Raymond, 1996.

[14] WordNet 2.1. http://wordnet.princeton.edu/

Mateas, Michael and Nick Montfort. “A Box, Darkly:
Obfuscation, Weird Languages, and Code Aesthetics.” In
Proceedings of the 6th Digital Arts and Culture Conference, IT
University of Copenhagen, 1-3 Dec 2005, pp. 144-153.

