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● Communities of many sorts exist within 
larger organizations, whether they are 
traditional or distributed.

● The structure of communities is 
important, but is almost never 
documented or easily determined.

● Computer communications and online 
documents can reveal this structure.

Organizations,
communities, and information
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Why learn
about communities?

To infiltrate and destroy them!
(Actually, probably not...)

To help people and organizations reach 
their goals; foster productivity, learning, 
research, creativity; support and build 
community.
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Studies of communities and 
information flow/structure

Three dealing with the 
World Wide Web:
● Gibson, Kleinberg, & 

Raghavan 1998

● Flake, Lawrence, & 
Giles 2000

● Adamic & Adar 2003

Two dealing with 
email data:
● Tyler, Wilkinson, & 

Huberman 2003

● Eckmann, Moses, & 
Sergi 2003
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What are “communities”?

Community was once used only to 
mean a local group, such a village, 
town, or neighborhood.

Sociologists now use the term more 
broadly, and not just because of 
computer-mediated communications.
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Organization: any stable pattern of 
transactions between individuals or 
aggregations of individuals.

Community: a social network of 
relationships that provide sociability 
support, information, and a sense of 
belonging.

Defining “community”
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Determining communities on 
the Web with HITS

Three dealing with the 
World Wide Web:
● Gibson, Kleinberg, & 

Raghavan 1998

● Flake, Lawrence, & 
Giles 2000

● Adamic & Adar 2003

Two dealing with 
email data:
● Tyler, Wilkinson, & 

Huberman 2003

● Eckmann, Moses, & 
Sergi 2003

Determining communities on 
the Web with HITS
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Hypertext Induced
Topic Search (HITS)

A way of discovering the best “hubs” and 
“authorities” for a given topic, starting 
with a topic-specific set of pages and 
then using only the hypertext structure.

From Kleinberg 1999; basis for the work 
in Gibson, Kleinberg, & Raghavan 1998.

Characterizes communities by their 
important pages, but doesn’t partition a 
graph into community/non-community.



Discovering Communities ... Montfort 9/32

HITS:
Hubs and authorities

A root set (from a search result) is the 
starting point; this is then expanded.

Hub: a page that is good at pointing to 
other pages—e.g., respected directories.

Authority: a page that is good at being 
pointed to—e.g., reliable sources.

Hubs point to many authorities, 
authorities are pointed to by many hubs.
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HITS:
Iterative algorithm

Hub weights: hi Authority weights: ai 

for (i=1..n)
ai ← 1; hi ← 1;

for (i=1..k)
for (p=1..n)

ap ← ∑
q:(q,p)∈E

 hq; hp ← ∑
q:(p,q)∈E

 aq;

a ← normalize(a); h ← normalize(h);
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HITS:
Eigenvector formulation

ap ← ∑
q:(q,p)∈E

 hq; hp ← ∑
q:(p,q)∈E

 aq;

With adjacency matrix A, one step:
a ← Ah; h ← ATa;

With z a vector of all ones, k steps:
h ← (ATA)(ATA)...(ATA)(ATA)z; that is...
h ← (ATA)kz; Similarly: a ← (AAT)kz;

So, the whole algorithm is just:
a ← ω1(AAT); h ← ω1(ATA);
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HITS: Multiple, possibly 
overlapping communities

ω1(AAT)...ωn(AAT) correspond to different 
communities, with the components of ωi 
indicating the most important authorities.

Similarly for hubs and ω1(ATA)...ωn(ATA)

One page may be a hub/authority in 
multiple communities.
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HITS and communities:
Main advantages/problems

Models multiple, overlapping communities.

Reflects that Web pages can be good 
referrers or good pages to refer to.

Only one free parameter: The root set.

This root set is very high-dimensional and 
may be generated with (unknown) hackery!
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Partioning a community with
an approximate minimum cut

Three dealing with the 
World Wide Web:
● Gibson, Kleinberg, & 

Raghavan 1998

● Flake, Lawrence, & 
Giles 2000

● Adamic & Adar 2003

Two dealing with 
email data:
● Tyler, Wilkinson, & 

Huberman 2003

● Eckmann, Moses, & 
Sergi 2003
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Approximate min cut:
The idea

For any page s on the Web, find a 
“community”: the set of pages, including 
s, that has more links (both ways) within 
the set than to pages outside the set.

On an undirected graph G, pick t not in 
the community. An s-t minimum cut C 
identifies the community, if s links to more 
than |C| community vertices and t links to 
more than |C| non-community vertices 
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Approximate min cut:
The reality

Crawl from “seed” vertex, recrawl 3 times
Add bidirectional edges 1st gen to 2nd gen
Adjust some edge weights
Use a “virtual sink,” link to remote vertices 

Three good experimental results
No proof of convergence
No proof of quality of approximation
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Approximate min cut
vs. HITS

Can enumerate community members 
without extracting multiple eigenvectors.

Doesn’t rely on identifying dominant 
hub/authorities, may identify communities 
of other topologies.

Begins with just a URL, not a root set.

Points out that the selection of a root set 
may be doing a lot of work.
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Finding Web “friends” 
with text and link similarity

Three dealing with the 
World Wide Web:
● Gibson, Kleinberg, & 

Raghavan 1998

● Flake, Lawrence, & 
Giles 2000

● Adamic & Adar 2003

Two dealing with 
email data:
● Tyler, Wilkinson, & 

Huberman 2003

● Eckmann, Moses, & 
Sergi 2003
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Finding “friends”: 
Similarity predicting links

Four types of items i on home pages A, B:
named entities, in-links, out-links,
mailing list membership

Similarity(A,B) = ∑
i∈A,i∈B

 1/log(count(i))

count(i) counts the total occurrences

Which types of items, and which specific 
items, best predict a link between A and B?
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Finding “friends”: 
Best predictors

1 In-links
2 Mailing list membership
3 Out-links
4 Named entities

Different items at MIT and Stanford

But, are these the right textual (and 
structural) measures to look at?
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Clustering the email 
graph with betweenness

Three dealing with the 
World Wide Web:
● Gibson, Kleinberg, & 

Raghavan 1998

● Flake, Lawrence, & 
Giles 2000

● Adamic & Adar 2003

Two dealing with 
email data:
● Tyler, Wilkinson, & 

Huberman 2003

● Eckmann, Moses, & 
Sergi 2003
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Betweenness and email:
Defining betweenness

A measure of centrality, from social 
network analysis.

betweenness(e) = ∑
s≠t 

#shortest paths(s,t) passing through e
#shortest paths(s,t)
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Betweenness and email:
Clustering communities
Create an edge when there are
● 30 emails total between parties, and
● 5 emails in each direction

while G=(V,E) is nonempty
remove argmax

e∈E
betweenness(e) from E

recalculate betweenness for all edges
for each affected component C=(Vc,Ec)

if (Vc<6) or (max
e∈Ec

betweenness(e)<(Vc-1))

output C and remove C from G
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Betweenness and email:
Arbitrary decisions, randomness

The choice of which edge to 
remove can be arbitrary.

Tyler et al. approximate the 
maximum betweenness 
computation, randomly, many 
times, then aggregate results.
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Betweenness and email:
Results on the HP Labs graph

485 employees → 367 vertices, 1110 edges

66 communities, from size 2 to size 57
mean: 8.4 members stdev: 5.3

17 crossed organizational boundaries.
Formal leaders were near the center.

16 subjects verified the 7 communities they 
were interviewed about, 7 said people were 
missing, 6 said an extra was included.
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Temporal coupling
in the email graph

Three dealing with the 
World Wide Web:
● Gibson, Kleinberg, & 

Raghavan 1998

● Flake, Lawrence, & 
Giles 2000

● Adamic & Adar 2003

Two dealing with 
email data:
● Tyler, Wilkinson, & 

Huberman 2003

● Eckmann, Moses, & 
Sergi 2003
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Temporal coupling:
Static graph and curvature

Curvature(v)= 

Static email graph retains only vertices 
with curvature greater than 0.1.

#edges in neighborhood of v
maximum # of edges neighborhood of v could hold
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Temporal coupling:
Mutual information for pairs
pA(1) = prob. A sends to B = 1-pA(0)
pAB(0,0)=prob. neither sends email
pAB(1,0)=prob. A sends to B, not vice-versa
pAB(0,1)=prob. B sends to A, not vice-versa
pAB(1,1)=prob. both send email

Mutual information between a pair of 
vertices I(A,B)=

Σ
i,j=0,1

pAB(i,j)•log(pAB(i,j) / pA(i)•pB(j))
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Temporal coupling:
Mutual information for triads

I(A,B,C)=

Σ pABC(i1,i2,i3,i4,i5,i6)•log(                                              )
pABC(i1,i2,i3,i4,i5,i6)

                                                                                        

pAB(i1,i2)•pAC(i3,i4)•pBC(i5,i6)
i1...i6=0,1
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Temporal coupling:
The conjugate graph and time

Create a new graph G’ where triangles in G 
with temporal cohesion ≥ 0.5 are vertices.

If the corresponding triangles in G share 
an edge, add an edge in G’.

The result had new clusters, not in the 
original graph, often across department 
boundaries.
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Common problems with 
community discovery so far

“Evaluation by admiration” rather than 
checking against social realities.

Free parameters that cover unknowns 
about communication.

Difficultly in comparing structural and 
textual results.
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Important advances in 
community discovery so far

Clear case for the importance of information 
and communications structure.

Mathematical advances that “boost” 
understanding of the Web/email/community.

Ethnographic/SNA connections between 
analysis of data and people’s understanding 
of their communities.


